高级检索

粉末冶金Mo–14Re合金热变形行为及微观组织演变

薛建嵘, 林小辉, 李延超, 梁静, 张新, 高选乔, 杨毅超, 张文

薛建嵘, 林小辉, 李延超, 梁静, 张新, 高选乔, 杨毅超, 张文. 粉末冶金Mo–14Re合金热变形行为及微观组织演变[J]. 粉末冶金技术, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010
引用本文: 薛建嵘, 林小辉, 李延超, 梁静, 张新, 高选乔, 杨毅超, 张文. 粉末冶金Mo–14Re合金热变形行为及微观组织演变[J]. 粉末冶金技术, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010
XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, ZHANG Xin, GAO Xuanqiao, YANG Yichao, ZHANG Wen. Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010
Citation: XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, ZHANG Xin, GAO Xuanqiao, YANG Yichao, ZHANG Wen. Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010

粉末冶金Mo–14Re合金热变形行为及微观组织演变

基金项目: 陕西省科技重大专项项目(2020ZDZX04-02-01;2020ZDZX04-02-02)
详细信息
    通讯作者:

    张文: E-mail: gwenzh@163.com

  • 中图分类号: TG146.4+1;TF123

Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy

More Information
  • 摘要:

    通过Gleeble 1500热模拟试验机对粉末冶金法制备的Mo–14Re合金进行了恒应变速率压缩实验,分析了变形温度(11001400 ℃)和应变速率(0.100~0.001 s−1)对流变应力及组织演变的影响,并采用双曲正弦型Arrhenius模型建立了Mo–14Re合金的本构方程。结果表明:随着变形温度升高或者应变速率降低,粉末冶金Mo–14Re合金在热变形过程的流变应力也随之减小,真应力–真应变曲线表现出明显的加工硬化和动态软化现象。动态软化行为主要归结于粉末冶金Mo–14Re合金热压缩变形处于低应变速率(0.010 s−1和0.001 s−1)或较高变形温度(>1200 ℃)时发生的动态再结晶,形核方式为晶界凸出形核,随着应变速率的降低或温度的升高,再结晶程度不断增加,晶粒不断长大,当温度为1400 ℃,应变速率为0.001 s−1时,完全再结晶完成。

    Abstract:

    The constant strain rate compression experiment of powder metallurgy Mo–14Re alloys was carried out by Gleeble 1500 thermal simulation tester. The effects of deformation temperature (1100~1400 ℃) and strain rate (0.100~0.001 s−1) on the flow stress and microstructure evolution were analyzed. The constitutive equation of Mo–14Re alloys was established by hyperbolic sinusoidal Arrhenius model. The results show that, the flow stress of powder metallurgy Mo–14Re alloys decreases with the increase of deformation temperature or the decrease of strain rate during the thermal deformation, and the true stress-true strain curve shows the obvious work hardening and dynamic softening phenomenon. The dynamic softening behavior is mainly attributed to the dynamic recrystallization of Mo–14Re alloys at low strain rate (0.010 s−1 and 0.001 s−1) or high deformation temperature (>1200 ℃) during the thermal compression. The nucleation mode is grain boundary protruding nucleation. With the decrease of strain rate or the increase of temperature, the degree of recrystallization continues to increase, the grains continue to grow, and the Mo–14Re alloys are completely recrystallized at 1400 ℃ with the strain rate of 0.001 s−1.

  • 图  1   经混合后的钼铼合金粉显微形貌(a),锻造后Mo–14Re合金的轴向显微组织(b),热压缩后试样俯视图(c)和热压缩后试样正视图(d)

    Figure  1.   Microstructure of the mixed Mo–14Re alloy powders (a), the axial microstructure of the forged Mo–14Re alloys (b), the top view of the hot compression samples (c), and the front view of the hot compression samples (d)

    图  2   Mo–14Re合金在不同应变速率条件下的真应力–真应变曲线及抗压强度:(a)0.100 s−1;(b)0.010 s−1;(c)0.001 s−1;(d)抗压强度

    Figure  2.   Stress-strain curves and compressive strength of the Mo–14Re alloys at the different true strains: (a) 0.100 s−1; (b) 0.010 s−1; (c) 0.001 s−1; (d) compressive strength

    图  3   Mo–14Re合金热变形的应变速率–流变应力关系曲线:(a)ln$ \dot \varepsilon $σ;(b)ln$ \dot \varepsilon $–lnσ

    Figure  3.   Relationship between the strain rate and steady-state stress during the thermal deformation of Mo–14Re alloys: (a) ln$ \dot \varepsilon $σ; (b) ln$ \dot \varepsilon $–lnσ

    图  4   Mo–14Re合金热变形的流变应力–应变速率与温度–流变应力关系曲线:(a)ln$ \dot \varepsilon $−ln[sinh(ασ)];(b)ln[sinh(ασ)]−1000/T

    Figure  4.   Flow stress-strain rate and temperature-flow stress of the Mo–14Re alloys during the thermal deformation: (a) ln$ \dot \varepsilon $−ln[sinh(ασ)]; (b) ln[sinh(ασ)]−1000/T

    图  5   Mo–14Re合金热变形的lnZ−ln[sinh(ασ)]曲线

    Figure  5.   lnZ−ln[sinh(ασ)] curve of the thermal deformation for the Mo–14Re alloys

    图  6   粉末冶金Mo−14Re合金实验峰值应力与Arrhenius模型本构方程预测应力

    Figure  6.   Experimental peak stress and stress prediction by constitutive equation of Arrhenius model for the powder metallurgy Mo−14Re alloys

    图  7   Mo–14Re合金在不同热变形条件下的微观组织

    Figure  7.   Microstructure of the Mo–14Re alloys under the different hot deformation conditions

  • [1] 蒋丽娟, 李来平, 姚云芳, 等. 2014年钼业年评. 中国钼业, 2015, 39(1): 1

    Jiang L J, Li L P, Yao Y F, et al. Annual review of molybdenum in 2014. China Molybd Ind, 2015, 39(1): 1

    [2] 王敏, 邓永山. 2015年全球钼市场评述. 中国钼业, 2016, 40(1): 55

    Wang M, Deng Y S. Global molybdenum market in 2015. China Molybd Ind, 2016, 40(1): 55

    [3] 王家鹏, 张洪川, 王建国, 等. 全球钼资源供需形势分析及对策建议. 中国矿业, 2016, 25(增刊2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001

    Wang J P, Zhang H C, Wang J G, et al. Analysis of global molybdenum resource supply and demand structure and some suggestions. China Min Mag, 2016, 25(Suppl 2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001

    [4] 李洪桂. 稀有金属冶金学. 北京: 冶金工业出版社, 1990

    Li H G. Metallurgy of Rare Earth. Beijing: Metallurgical Industry Press, 1990

    [5] 杨松涛, 李继文, 魏世忠, 等. 纯钼板坯高温塑性变形行为及本构方程. 中国有色金属学报, 2011, 21(9): 2126

    Yang S T, Li J W, Wei S Z, et al. Pyroplastic deformation behavior of pure molybdenum plate slab and constitutive equation. Chin J Nonferrous Met, 2011, 21(9): 2126

    [6]

    Chaudhuri A, Sarkar A, Suwas S. Investigation of stress-strain response, microstructure and texture of hot deformed pure molybdenum. Int J Refract Met Hard Mater, 2018, 73: 168 DOI: 10.1016/j.ijrmhm.2018.02.011

    [7] 孙远, 王妍, 徐伟, 等. 再结晶态TZM合金热变形特征的研究. 稀有金属, 2010, 34(5): 689 DOI: 10.3969/j.issn.0258-7076.2010.05.012

    Sun Y, Wang Y, Xu W, et al. Hot deformation behavior of recrystallized TZM alloy. Chin J Rare Met, 2010, 34(5): 689 DOI: 10.3969/j.issn.0258-7076.2010.05.012

    [8]

    Hu P, Li H, Zuo Y G, et al. Investigation of microstructure and tensile properties of as-processed TZM alloy at elevated temperature. Mater Charact, 2021, 173(12): 110933

    [9]

    Safari A, Imran M, Weiss S. A comparative study on modified johnson–cook and arrhenius-type constitutive models to predict the hot deformation behaviour of molybdenum-hafnium-carbide alloy. J Mater Eng Perform, 2021, 30: 1945 DOI: 10.1007/s11665-021-05464-2

    [10] 黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. At Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    [11] 曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料的研究进展. 粉末冶金技术, 2023, 41(4): 307

    Zeng Y, Sun Y J, An G, et al. Research progress of Mo–Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307

    [12]

    Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys. Metall Mater Trans A, 2006, 37: 2955 DOI: 10.1007/s11661-006-0177-9

    [13]

    Leonard K J, Busby J T, Zinkle S J. Microstructural and mechanical property changes with aging of Mo–41Re and Mo–47.5Re alloys. J Nucl Mater, 2007, 366(3): 369 DOI: 10.1016/j.jnucmat.2007.03.027

    [14] 薛建嵘, 林小辉, 李延超, 等. 热处理温度对Mo–14Re合金管材微观组织及力学性能的影响. 粉末冶金技术, 2023, 41(3): 263

    Xue J R, Lin X H, Li Y C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes, Powder Metall Technol, 2023, 41(3): 263

    [15] 焦奔奇. WSTi3515S阻燃钛合金大晶粒超塑性及组织演变研究[学位论文]. 西安: 长安大学, 2017

    Jiao B Q. Reach on Superplasticity and Microstructure Evolution with Large Grains of WSTi3515S Burn-Resistant Titanium Alloy [Dissertation]. Xi’an: Chang’an University, 2017

    [16]

    Rao K P, Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel. J Eng Mater Technol, 1992, 114(1): 116 DOI: 10.1115/1.2904131

    [17]

    Kreuss G. Deformation Processing and Structure. Ohio: American Society for Metal, 1984

    [18]

    Zhao J W, Ding H, Zhao W J, et al. Modelling of the hot deformation behavior of a titanium alloy using constitutive equations and artificial neural network. Comput Mater Sci, 2014, 92: 47 DOI: 10.1016/j.commatsci.2014.05.040

    [19]

    Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel. J Appl Phys, 1944, 15: 22 DOI: 10.1063/1.1707363

图(7)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  61
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 录用日期:  2022-04-17
  • 网络出版日期:  2022-04-17
  • 刊出日期:  2024-06-27

目录

    /

    返回文章
    返回