Research progress and trend of advanced tungsten composite modification used for plasma facing materials
-
摘要:
核聚变能是解决未来社会能源危机的有效途径之一,但面向等离子体材料在聚变堆体中面临着来自等离子体严重的辐照和热冲击损伤。纯钨因其高热导率、良好的高温强度、低溅射和低蒸气压而被认为是最有希望的面向等离子体候选材料。纯钨在聚变堆工况条件下具有严重的脆性风险,因而对面向等离子体材料用先进钨材料的改性成为近年来的研究热点。钨基复合材料的改性方法主要包括合金化、第二相强化、纤维增韧和复合强化。本文综述了近年来国内外针对核聚变反应堆面向等离子体材料用钨基复合材料的改性方法及其性能,分析了钨基复合材料的改性机制,并展望了面向等离子体材料用钨基复合材料的发展方向。
Abstract:Fusion energy is one of the effective ways to solve the energy crisis in the future, but the plasma-facing materials (PFMs) face the serious radiation and thermal shock damage from the plasma in the fusion reactor. At present, the pure tungsten is considered as the most promising PFM candidate materials because of the high thermal conductivity, good high-temperature strength, low sputtering, and low vapor pressure. Pure tungsten has the serious brittleness risk under the fusion reactor condition, so the modification of the advanced tungsten materials for PFMs has become the research hotspot in recent years. The modification methods of tungsten matrix composite include alloying, second phase strengthening, fiber reinforcement, and composite toughening. In this paper, the modification methods and performance of the tungsten matrix composites as PFMs used in the nuclear fusion reactors at home and abroad in recent years were reviewed, the modification mechanism of tungsten matrix composites was analyzed and summarized, and the development direction of tungsten matrix composites as PFMs was prospected.
-
Keywords:
- fusion reactor /
- plasma-facing materials /
- tungsten composites /
- modification methods /
- performance
-
硬质合金是以难熔金属碳化物(WC、TiC、TaC等)为硬质相,以过渡金属元素(Co、Ni、Fe等)为粘结相,采用粉末冶金方法制备的复合材料[1‒2]。硬质合金具有高强度、高硬度、高弹性模量、高耐磨损、高耐腐蚀、低热膨胀系数以及高化学稳定性等优点,被广泛地应用于拉丝模具、机械加工、耐磨耐腐蚀零件以及结构部件等领域,被誉为“工业的牙齿”[3‒6]。
自1923年发展至今,硬质合金的材料体系、WC晶粒尺寸、微观结构类型不断得到丰富与发展[7‒9]。均匀结构硬质合金是指内部微观结构均匀一致,具有相同成分、组织及性能的硬质合金[10]。根据WC晶粒大小,均匀结构硬质合金可分为纳米及超细晶硬质合金、超粗晶硬质合金和双晶硬质合金等[11‒18]。均匀结构硬质合金由陶瓷硬质相和金属粘结相组成,陶瓷硬质相的比例提高有助于硬度和耐磨性的改善,但会造成韧性的降低;反之,当金属粘结相的比例提高时,会出现相反的力学性能变化规律。均匀结构硬质合金存在无法同时提高耐磨性和断裂韧性的局限性。表面改性在硬质合金表层空间尺度上实现微观组织的变化,进而对表面力学性能进行优化调控,最终提高硬质合金工具的使用寿命,满足工业应用不断发展的现状。目前主要通过化学表面改性和物理表面改性获得具有实际工程应用价值的非均匀结构硬质合金。近年来,通过渗碳、脱碳、渗氮或脱氮处理等化学表面改性制备梯度硬质合金或通过物理气相沉积和化学气相沉积等物理表面改性制备涂层硬质合金已成为非均匀结构硬质合金的研究热点。基于物理气相沉积或化学气相沉积涂层方法的多层复合涂层硬质合金已实现大规模商业化应用。
本文针对目前传统均匀结构硬质合金耐磨性和断裂韧性难以同时提升的问题提出改进措施,介绍了不同表面改性处理得到非均匀结构硬质合金的制备机理与研究现状,并对今后的研究方向提出了展望。
1. 化学表面改性
随着硬质合金制备技术的发展,非均匀结构硬质合金的制备方法不断丰富,其中表面改性是制备非均匀结构硬质合金的主要方法。化学表面改性是通过原子扩散、液体流动、化学反应等方法实现硬质合金表面物相及微观组织的改变,进而完成合金表面力学性能的定向改善[19‒20]。目前通过化学表面改性制备的常见梯度硬质合金如表1所示。
表 1 基于化学表面改性的常见梯度硬质合金Table 1. Graded cemented carbides based on the chemical surface modification化学表面
改性方法材料体系特点 梯度结构特征 渗碳处理 缺碳 表层贫Co,芯部含η相 正常碳的质量分数 表层贫Co,芯部不含η相 脱碳处理 碳的质量分数偏高 表层富Co 渗氮处理 含Ti、Ta、Nb等元素 表层富含立方相 脱氮处理 含N元素 表层富Co,无立方相 渗碳或脱碳处理实现梯度结构是基于碳的扩散及碳的质量分数对硬质合金微观组织的影响。如WC–Co合金中只出现WC与Co两相,正常碳的质量分数应分布在富碳上限和缺碳下限之间[21],其中富碳上限为(6.13+0.058×Co质量分数)%,缺碳下限为(6.13‒0.079×Co质量分数)%。当合金中的碳质量分数高于富碳上限时,就会出现游离C,也就是石墨相;当合金中的碳质量分数低于缺碳下限时,就会出现η相[21‒22]。渗氮或脱氮是基于氮的扩散和氮、钛及碳之间的化学反应。氮的扩散实现硬质合金表面物相和微观组织的变化,进而促进梯度结构的形成[19,23]。
1.1 渗碳处理——表层贫Co且芯部含η相梯度结构
表层贫Co且芯部含η相梯度结构的形成机理分析如下[24–27]:通过预烧结制备含η相硬质合金,然后进行渗碳液相烧结,渗入合金表面的C原子与表面η相发生反应,生成WC与Co。随着C原子由表及里的迁移,C原子由外向内与η相反应,这种反应导致η相降低甚至消失,Co相增加。C原子浓度在液相Co中呈现出外高内低的梯度,C原子浓度梯度驱动分解出来的W原子往外表层迁移,并且会与液相Co中的C原子反应生成WC。由W原子往外迁移而引起的体积缺陷也会驱动外表层中的液相Co由表及里迁移,因而导致过渡层的Co含量(质量分数)偏高,进而引起过渡层WC晶粒粗化。
表层贫Co且芯部含η相梯度结构示意图如图1所示[27],可分为贫Co表层、富Co过渡层和含η相芯部。该梯度硬质合金的Co含量(质量分数)与维氏硬度分布如图2所示[27]。由图可知,表层Co质量分数低于名义Co质量分数,因而表层硬度高;过渡层的Co质量分数高于名义Co质量分数,因而硬度低,韧性高;芯部含有η相,其Co质量分数是合金的名义Co质量分数。
1.2 渗碳处理——表层贫Co且芯部不含η相梯度结构
图3所示为WC–10Co硬质合金的W–Co–C相图[28]。关于表层贫Co且芯部不含η相梯度结构形成机理分析如下[28‒29]:当温度在1275~1325 ℃区间时,WC、固相Co和液相Co三相共存,在此温度范围内,当C质量分数在5.34%~5.65%范围内增加时,固相Co含量(质量分数)明显减少,而液相Co含量显著增加。因此,当低C含量且不含η相硬质合金在此温度下进行渗碳处理时,C原子逐渐渗入合金的表层,较高的C含量使合金表层首先出现液相Co,进而液相Co从合金表层向合金内部渗入,当保温一定时间,再冷却降温后,所有Co都会以固相Co的形式存在,最终出现表层贫Co的梯度硬质合金。该梯度结构特征如图4所示[28],由贫Co的表层和无η相的芯部组成。
1.3 脱碳处理——富Co表层梯度硬质合金
富Co表层梯度结构形成机理分析[30‒32]如下:从图3可以看出,液相Co含量(质量分数)会随着温度和C含量(质量分数)的变化而改变。脱碳处理即在低碳势的气氛下进行烧结,在1300 ℃以下进行脱碳,硬质合金表层的C含量将会率先降低,表层的Co优先从液相到固相发生转变,当液相Co开始凝固时,表层中溶解在液相Co中的C和W溶解度会下降,进而表层中的C和W向合金的内部迁移,最终形成表层富Co层,类似于一层Co覆盖在硬质合金的表层。脱碳处理得到的富Co表层梯度硬质合金如图5所示[28]。通过脱碳处理制备表层覆盖Co层的梯度硬质合金,对原始合金的C含量(质量分数)要求偏高,否则将会造成合金内部缺C。
1.4 渗氮处理——表层富含立方相梯度结构
表层富含立方相梯度结构形成机理如图6所示[19,33‒34]:渗氮促使烧结气氛中的N原子扩散到合金表面,N原子与合金表面的C、Ti原子反应生成Ti(C,N)。该反应促使合金内部区域的Ti原子从里往外迁移。合金次表层的Ti原子向外迁移留下空位,此空位需要其他原子予以填充。金属Co原子在硬质合金材料体系中的扩散系数高,尤其是液相烧结,部分Co相为液相,流动性最好,所以Co原子会定向迁移填充由Ti原子迁移所造成的原子空位。此时,合金的次表层Co含量增加,次表层Co的富集促进次表层WC晶粒通过溶解–析出机制长大粗化,所以次表层富Co且WC晶粒粗大。最终形成表层富立方相、次表层富Co且WC晶粒粗大的梯度结构硬质合金。
1.5 脱氮处理——表层富Co且无立方相梯度结构
表层富Co且无立方相梯度结构形成机理如图7所示[35‒36]:在无氮或贫氮的烧结气氛下,含氮硬质合金在液相烧结过程中合金表面的氮化物发生分解,即合金表面N原子向烧结气氛中扩散,进而造成合金表层的N原子含量降低。此时,合金内部N原子的浓度大于合金表面N原子的浓度,合金内部的N原子向合金表面扩散。由于N与Ti原子之间存在强烈的亲和力,当合金内部的N原子通过粘结相向合金表面扩散时,合金表面的Ti原子也会通过粘结相向内部扩散,同时液相Co会从合金内部流向表层去填补由TiN分解出现的空位,进而导致合金表层的Co含量增加。直至合金表层TiN几乎全部发生分解,进而形成表层富Co且无立方相梯度结构硬质合金。
目前,部分基于化学表面改性方法的结构功能一体化梯度硬质合金材料已实现商业化且制备机理已基本清晰。但在化学表面改性实现梯度结构过程中,关于化学扩散与热扩散原理还缺乏深入研究,需要深入分析原子的迁移驱动力、动力学方程,建立原子在化学势和温度梯度作用下的迁移模型。
2. 物理表面改性
物理表面改性是通过涂覆的方法在硬质合金表面制备单层或者多层复合涂层,从而赋予硬质合金特定的表面性能[37]。目前,涂层硬质合金主要通过物理气相沉积和化学气相沉积方法在材料表面涂覆高耐磨的难熔金属或非金属化合物[38]。
2.1 涂层方法分析
国内外研究人员对物理气相沉积和化学气相沉积涂层方法进行了广泛且深入的研究,结果表明两种方法分别具有不同优势[38‒41]。对于物理气相沉积,沉积温度低,涂层的沉积温度约200~500 ℃,一般对基体影响不大;对于化学气相沉积,由于沉积温度较高(850~1050 ℃),基体通常参与了薄膜成膜初期的化学反应。物理气相沉积涂层表面光滑,内部产生压应力,有助于抗裂纹扩展。对于化学气相沉积,涂层反应源的制备相对比较容易,涂层与基体结合强度高,涂层附着力强、均匀性好,适合用来给复杂形貌工件镀层。化学气相沉积涂层工业化成本低于物理气相沉积涂层。
2.2 涂层结构设计
由于单一涂层难以满足当前机加工对涂层硬质合金刀具的力学性能要求,涂层成分趋于多元化,涂层结构趋于复合化,涂层微观组织趋于纳米化[38,42]。从目前应用需求分析,机加工对涂层结构的功能性要求越来越高[42],复合功能涂层结构已取得广泛应用。
瑞典、美国等国家的著名刀具公司都开发有多层结构的涂层硬质合金刀具。如瑞典Sandvik Coromant公司的GC2015牌号刀具具有TiCN–TiN/Al2O3–TiN的三层结构复合涂层,TiCN底层与基体的结合强度高,TiN/Al2O3中间层既耐磨又能抑制裂纹的扩展,TiN表层具有较好的化学稳定性且易于观察刀具的磨损[43]。美国Kennametal Hertel公司的KC9315型刀片上共有三层涂层,底层是Al2O3,中间层是TiCN,表面层是TiN。这种多层复合涂层的性能较单层的TiC、TiN涂层及TiC/TiN双层涂层具有明显性能优势。多层复合涂层的功能分析如图8所示[42]。
物理表面改性方法解决了硬质合金刀具硬度与强度之间的矛盾,已经在数控车床刀具领域取得广泛应用。涂层的性能取决于材料的微观组织结构与化学成分,除了研究涂层材料、涂层制备技术、涂层工艺之外,还需要重点研究涂层材料与硬质合金材料之间化学成分和热膨胀系数的匹配关系。
3. 总结与展望
硬质合金的主要研究方向已经从均匀结构向非均匀结构转变。对于化学表面改性梯度硬质合金,在研究当前梯度硬质合金微观结构及形成机理的基础上,需要完善其热力学、动力学数据,从微观机制上完整解释梯度结构的形成过程,实现准确调控梯度结构形成的重要参数,为功能梯度硬质合金的制备提供更充分的基础理论指导。对于物理表面改性涂层硬质合金,当前研究主要是在均匀结构硬质合金基体上进行涂层结构复合化设计,对硬质合金基体的梯度结构设计在改善涂层与基体结合强度方面具有潜在技术优势,因此,需要对硬质合金基体的非均匀结构设计开展深入研究。
-
图 6 (a)W–5%Mo(质量分数)合金1450 ℃非等温烧结过程中科肯达尔孔隙引起的膨胀和显微组织以及(b)1600 ℃放电等离子烧结W–5%Mo合金相对密度与温度的关系和显微组织[32]
Figure 6. Expansion and microstructure of the W–5%Mo alloys (mass fraction) caused by Kirkendal pores in the non-isothermal sintering at 1450 ℃ (a) and the relationship between the relative density and temperature and the corresponding microstructure of the W–5%Mo alloys prepared by SPS at 1600 ℃ (b)[32]
图 11 冷冻干燥样品微观结构及粒度分布[38]:(a)不添加分散剂微观结构;(b)不添加分散剂粒度分布;(c)添加分散剂微观结构;(d)添加分散剂粒度分布
Figure 11. SEM images and particle size distribution of the freeze-dried samples[38]: (a) SEM images without dispersant; (b) particle size distribution without dispersant; (c) SEM images with dispersant; (d) particle size distribution with dispersant
图 12 纯W和W–2%Y2O3复合材料经氦离子辐照后表面形貌[39]:(a)纯W表面辐照区;(b)纯W表面非辐照区;(c)W–2%Y2O3表面辐照区;(d)W–2%Y2O3表面非辐照区
Figure 12. Surface morphology of the pure tungsten and W–2%Y2O3 composites irradiated by helium ions[39]: (a) pure tungsten surface in irradiated zone; (b) pure tungsten surface in non-irradiated zone; (c) W–2%Y2O3 surface in irradiated zone; (d) W–2%Y2O3 surface in non-irradiation zone
图 16 不同热流密度热冲击后W–ZrC试样的表面及加载区裂纹形貌[45]:(a)0.22 GW·m−2;(b)0.33 GW·m−2;(c)0.44 GW·m−2;(d)0.22 GW·m−2;(e)0.33 GW·m−2;(f)0.44 GW·m−2;(g)0.22 GW·m−2裂纹深度;(h)0.33 GW·m−2裂纹深度;(i)0.44 GW·m−2裂纹深度
Figure 16. Surface and crack morphology in the loaded areas of the W–ZrC samples after 100 shots with the different heat flux[45]: (a) 0.22 GW·m−2; (b) 0.33 GW·m−2; (c) 0.44 GW·m−2; (d) 0.22 GW·m−2; (e) 0.33 GW·m−2; (f) 0.44 GW·m−2; (g) cracking depth at 0.22 GW·m−2; (h) cracking depth at 0.33 GW·m−2; (i) cracking depth at 0.44 GW·m−2
图 23 W–Y2O3合金中W晶界氧化物粒子透射电镜高角环形暗场相(high angle annular dark field,HAADF)和能量色散X射线光谱[58]:(a)La3+掺杂HAADF;(b)La3+掺杂EDX;(c)Hf4+掺杂HAADF;(d)Hf4+掺杂EDX
Figure 23. HAADF images and EDX of the oxide particles at W grain boundary for W–Y2O3 alloys[58]: (a) HAADF of La3+ doping; (b) EDX of La3+ doping; (c) HAADF of Hf4+ doping; (d) EDX of Hf4+ doping
图 24 试样断口扫描电子显微形貌和平均晶粒尺寸[59]:(a)W–1TiC;(b)不同Ti含量W–1TiC–xTi平均晶粒尺寸;(c)W–1TiC–0.5Ti;(d)W–1TiC–0.7Ti
Figure 24. SEM micrographs of the fracture surface and the average grain size of samples[59]: (a) W–1TiC; (b) the average grain size of the W–1TiC–xTi samples with different Ti contents; (c) W–1TiC–0.5Ti; (d) W–1TiC–0.7Ti
表 1 纯W和W–2%Y2O3在氦离子辐照下不同区域的表面粗糙度[39]
Table 1 Surface roughness of pure tungsten and W–2%Y2O3 in different regions under helium ion irradiation[39]
试样 辐照区 / nm 非辐照区 / nm 纯W 138.5±3.5 84.0±3.5 W–2%Y2O3 136.5±3.0 120.5±3.5 表 2 放电等离子烧结W–3Re–xHfC复合材料的测量密度、理论密度、相对密度和维氏硬度[55]
Table 2 Measurement density, theoretical density, relative density, and Vickers hardness of W–3Re–xHfC composites prepared by SPS[55]
试样 平均晶粒尺寸 / μm 测量密度 / (g·cm−3) 理论密度 / (g·cm−3) 相对密度 / % 维氏硬度,HV 抗压强度 / MPa W–Re 8.81±0.15 18.92 19.40 97.5 342.6±12.5 250.43±8.61 W–Re–0.5HfC 7.63±0.20 18.94 19.35 97.9 369.4±10.3 305.26±12.42 W–Re–1.0HfC 5.82±0.18 18.95 19.24 98.5 381.8±13.4 400.15±11.05 W–Re–5.0HfC 3.85±0.12 18.57 18.81 98.8 447.1±8.6 605.28±10.61 W–Re–10.0HfC 2.14±0.13 17.68 18.38 96.2 659.4±15.3 852.35±5.62 -
[1] Asgarian M A, Seyedhabashi M M R, Bidabadi B S, et al. Radiation damage of tungsten surface irradiated with high-energy hydrogen and helium beams of plasma focus device. Fusion Eng Des, 2020, 160: 112007 DOI: 10.1016/j.fusengdes.2020.112007
[2] 余明. 变形量和温度对纯钨再结晶特性影响研究[学位论文]. 合肥: 合肥工业大学, 2017 Yu M. Effects of Deformation Ratio and Annealing Temperature on the Recrystallization Behavior of Pure Tunsten [Dissertation]. Hefei: Hefei University of Technology, 2017
[3] Neu R, Hopf C, Kallenbach A, et al. Operational conditions in a W-clad tokamak. J Nucl Mater, 2007, 367: 1497
[4] Travere J M, Aumeunier M H, Joanny M, et al. Imaging challenges for ITER plasma-facing component protection. Fusion Sci Technol, 2013, 64(4): 735 DOI: 10.13182/FST13-A24093
[5] Matthews G F. Material migration in divertor tokamaks. J Nucl Mater, 2005, 337(1-3): 1
[6] Philipps V. Tungsten as material for plasma-facing components in fusion devices. J Nucl Mater, 2011, 415(1): S2 DOI: 10.1016/j.jnucmat.2011.01.110
[7] Hu W, Du Z, Dong Z, et al. The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering. Scr Mater, 2021, 198: 113831 DOI: 10.1016/j.scriptamat.2021.113831
[8] Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 DOI: 10.1016/j.ijrmhm.2016.11.013
[9] Dong Z, Ma Z, Liu Y. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Mater, 2021, 220: 117309 DOI: 10.1016/j.actamat.2021.117309
[10] Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten-A review. Int J Refract Met Hard Mater, 2018, 75: 170 DOI: 10.1016/j.ijrmhm.2018.04.012
[11] Dong Z, Hu W, Ma Z, et al. The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys. Mater Chem Front, 2019, 3(10): 1952 DOI: 10.1039/C9QM00422J
[12] Liu N, Dong Z, Ma Z, et al. Influence of yttrium addition on the reduction property of tungsten oxide prepared via wet chemical method. Acta Metall Sinica, 2020, 33(2): 275 DOI: 10.1007/s40195-019-00975-3
[13] Wang Z, Wu H, Zhu T, et al. Defects introduced by helium irradiation at different temperatures in W and W–5wt%Re alloy. Fusion Eng Des, 2021, 172: 112746 DOI: 10.1016/j.fusengdes.2021.112746
[14] Bonny G, Bakaev A, Terentyev D, et al. Elastic properties of the sigma W–Re phase: A first principles investigation. Scr Mater, 2017, 128: 45 DOI: 10.1016/j.scriptamat.2016.09.039
[15] Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J Mater Sci Technol, 2020, 52: 29 DOI: 10.1016/j.jmst.2020.02.046
[16] Huang B, Tang J, Chen L Q, et al. Design of highly thermal-shock resistant tungsten alloys with nanoscaled intra- and inter-type K bubbles. J Alloys Compd, 2019, 782: 149 DOI: 10.1016/j.jallcom.2018.12.168
[17] 罗来马, 黄科, 昝祥, 等. 合金化改性钨基材料的组织和性能研究与发展. 机械工程学报, 2018, 54(8): 117 DOI: 10.3901/JME.2018.08.117 Luo L M, Huang K, Zan X, et al. Research and development of alloy modified tungsten-based materials. Chin J Mech Eng, 2018, 54(8): 117 DOI: 10.3901/JME.2018.08.117
[18] Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading. Nucl Mater Energy, 2016, 9: 399 DOI: 10.1016/j.nme.2016.07.009
[19] Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten-A review. Int J Refract Met Hard Mater, 2018, 75: 248 DOI: 10.1016/j.ijrmhm.2018.04.021
[20] Webb J, Gollapudi S, Charit I. An overview of creep in tungsten and its alloys. Int J Refract Met Hard Mater, 2019, 82: 69 DOI: 10.1016/j.ijrmhm.2019.03.022
[21] Mao Y, Coenen J W, Riesch J, et al. Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology. Composites Part A, 2018, 107: 342 DOI: 10.1016/j.compositesa.2018.01.022
[22] Waseem O A, Ryu H J. Toughening of a low-activation tungsten alloy using tungsten short fibers and particles reinforcement for fusion plasma-facing applications. Nucl Fusion, 2019, 59(2): 026007 DOI: 10.1088/1741-4326/aaf43f
[23] Kang K, Tu R, Luo G, et al. Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten. J Alloys Compd, 2018, 767: 1064 DOI: 10.1016/j.jallcom.2018.07.156
[24] Dong L, Chen W, Zheng C, et al. Microstructure and properties characterization of tungsten-copper composite materials doped with graphene. J Alloys Compd, 2017, 695: 1637 DOI: 10.1016/j.jallcom.2016.10.310
[25] Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J Mater Sci, 1995, 30(3): 770 DOI: 10.1007/BF00356341
[26] Wang Q, Du G P, Chen N, et al. Ideal strengths and thermodynamic properties of W and W–Re alloys from first-principles calculation. Fusion Eng Des, 2020, 155: 111579 DOI: 10.1016/j.fusengdes.2020.111579
[27] Kappacher J, Leitner A, Kiener D, et al. Thermally activated deformation mechanisms and solid solution softening in W–Re alloys investigated via high temperature nanoindentation. Mater Des, 2020, 189: 108499 DOI: 10.1016/j.matdes.2020.108499
[28] Ravi K V, Gibala R. The strength of niobium-oxygen solid solutions. Acta Metall, 1970, 18(6): 623 DOI: 10.1016/0001-6160(70)90091-X
[29] Schade P, Ortner H M, Smid I. Refractory metals revolutionizing the lighting technology: A historical review. Int J Refract Met Hard Mater, 2015, 50: 23 DOI: 10.1016/j.ijrmhm.2014.11.002
[30] Shu X, Qiu H, Huang B, et al. Preparation and characterization of potassium doped tungsten. J Nucl Mater, 2013, 440(1): 414
[31] Shu X, Huang B, Liu D, et al. Effects of low energy helium plasma irradiation on potassium doped tungsten. Fusion Eng Des, 2017, 117: 8 DOI: 10.1016/j.fusengdes.2017.02.004
[32] Srivastav A K, Chawake N, Yadav D, et al. Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W–5wt.%Mo alloy. Scr Mater, 2019, 159: 41 DOI: 10.1016/j.scriptamat.2018.09.013
[33] Ipatova I, Greaves G, Pacheco-Gutiérrez S, et al. In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800 ℃. J Nucl Mater, 2021, 550: 152910 DOI: 10.1016/j.jnucmat.2021.152910
[34] Xu M Y, Luo L M, Zhou Y F, et al. Helium irradiation behavior of tungsten-niobium alloys under different ion energies. Fusion Eng Des, 2018, 132: 7 DOI: 10.1016/j.fusengdes.2018.05.015
[35] 沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165 DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008 Shen D N, Wang C N, Gao P, et al. Ultrafine grained W–Ti alloys prepared by spark plasma sintering. Powder Metall Technol, 2021, 39(2): 165 DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
[36] Luo L M, Zhao Z H, Yao G, et al. Recent progress on preparation routes and performance evaluation of ODS/CDS–W alloys for plasma facing materials in fusion devices. J Nucl Mater, 2021, 548: 152857 DOI: 10.1016/j.jnucmat.2021.152857
[37] Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W–Y2O3 alloy under helium irradiation. Sci Rep, 2015, 5: 12755 DOI: 10.1038/srep12755
[38] Hu W Q, Dong Z, Wang H, et al. Microstructure refinement and mechanical properties improvement in the W–Y2O3 alloys via optimized freeze-drying. Int J Refractory Met Hard Mater, 2021, 95: 105453 DOI: 10.1016/j.ijrmhm.2020.105453
[39] Yao G, Luo L M, Tan X Y, et al. Effect of Y2O3 particles on the helium ion irradiation damage of W–2%Y2O3 composite prepared by wet chemical method. Materialia, 2019, 6: 100268 DOI: 10.1016/j.mtla.2019.100268
[40] Yang J, Gang C, Zheng C, et al. Effects of doping route on microstructure and mechanical properties of W–1.0wt.%La2O3 alloys. Trans Nonferrous Met Soc China, 2020, 30(12): 3296 DOI: 10.1016/S1003-6326(20)65462-0
[41] Liu L, Li S Z, Liu D P, et al. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation. J Nucl Mater, 2018, 501: 275 DOI: 10.1016/j.jnucmat.2018.01.047
[42] Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W–ZrC alloys for plasma facing components in fusion devices. Nucl Mater Energy, 2018, 16: 191 DOI: 10.1016/j.nme.2018.07.002
[43] Lang E, Schamis H, Madden N, et al. Recrystallization suppression through dispersion-strengthening of tungsten. J Nucl Mater, 2021, 545: 152613 DOI: 10.1016/j.jnucmat.2020.152613
[44] Li P, Fan J, Han Y, et al. Microstructure evolution and properties of tungsten reinforced by additions of ZrC. Rare Met Mater Eng, 2018, 47(6): 1695 DOI: 10.1016/S1875-5372(18)30152-8
[45] Wang M M, Deng H W, Wang H, et al. Fabrication and stability of ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W alloy. Fusion Eng Des, 2021, 169: 112483 DOI: 10.1016/j.fusengdes.2021.112483
[46] Kurishita H, Matsuo S, Arakawa H, et al. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W–(0-1.5)wt% TiC. J Nucl Mater, 2009, 386-388: 579 DOI: 10.1016/j.jnucmat.2008.12.181
[47] 吴玉程. 面向等离子体W材料改善韧性的方法与机制. 金属学报, 2019, 55(2): 171 DOI: 10.11900/0412.1961.2018.00404 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility. Acta Metall Sinica, 2019, 55(2): 171 DOI: 10.11900/0412.1961.2018.00404
[48] Gietl H, Riesch J, Coenen J W, et al. Tensile deformation behavior of tungsten fibre-reinforced tungsten composite specimens in as-fabricated state. Fusion Eng Des, 2017, 124: 396 DOI: 10.1016/j.fusengdes.2017.02.054
[49] Gietl H, Riesch J, Coenen J W, et al. Production of tungsten-fibre reinforced tungsten composites by a novel continuous chemical vapour deposition process. Fusion Eng Des, 2019, 146: 1426 DOI: 10.1016/j.fusengdes.2019.02.097
[50] Zhang L, Jiang Y, Fang Q, et al. Comparative investigation of tungsten fibre nets reinforced tungsten composite fabricated by three different methods. Metals, 2017, 7(7): 249 DOI: 10.3390/met7070249
[51] Chen L, Qiu W, Deng H, et al. Annealing induced shrinkage-fill effect of tungsten-potassium alloys with trace titanium doping. Int J Refract Met Hard Mater, 2020, 90: 105193 DOI: 10.1016/j.ijrmhm.2020.105193
[52] Miyazawa T, Garrison L M, Geringer J W, et al. Neutron irradiation effects on the mechanical properties of powder metallurgical processed tungsten alloys. J Nucl Mater, 2020, 529: 151910 DOI: 10.1016/j.jnucmat.2019.151910
[53] Miyazawa T, Garrison L M, Geringer J W, et al. Tensile properties of powder-metallurgical-processed tungsten alloys after neutron irradiation near recrystallization temperatures. J Nucl Mater, 2020, 542: 152505 DOI: 10.1016/j.jnucmat.2020.152505
[54] Shi K, Huang B, He B, et al. Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W–K–TiC alloys. Nucl Eng Technol, 2019, 51(1): 190 DOI: 10.1016/j.net.2018.09.015
[55] Li Y C, Zhang W, Li J F, et al. Microstructure and high temperature mechanical properties of advanced W–3Re alloy reinforced with HfC particles. Mater Sci Eng A, 2021, 814: 141198 DOI: 10.1016/j.msea.2021.141198
[56] Zhang J, Tian Y, Zhu J, et al. Microstructure and mechanical properties of HfC reinforced W matrix composites regulated by trace Zr. Int J Refract Met Hard Mater, 2020, 86: 105096 DOI: 10.1016/j.ijrmhm.2019.105096
[57] Zhao B L, Xie Z M, Liu R, et al. Fabrication of an ultrafine-grained W–ZrC–Re alloy with high thermal stability. Fusion Eng Des, 2021, 164: 112208 DOI: 10.1016/j.fusengdes.2020.112208
[58] Dong Z, Ma Z Q, Yu L M, et al. Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants. Sci China Mater, 2021, 64(4): 987 DOI: 10.1007/s40843-020-1481-0
[59] Zhang Z W, Zhao S Q, Lü Y Q, et al. Modification of microstructure and performance via doping Ti in W–1TiC fine-grained alloy. Mater Sci Eng A, 2021, 825: 141918 DOI: 10.1016/j.msea.2021.141918
-
期刊类型引用(2)
1. 唐彦渊,羊求民,徐国钻,王红云,钟志强. 微量Y_2O_3对WC-6Co非均匀结构硬质合金微观结构及性能的影响. 粉末冶金技术. 2024(02): 184-191 . 本站查看
2. 周晓刚,纪飞飞. 激光喷丸作用下TC4双相钛合金HCP结构位错组态及性能研究. 应用激光. 2022(10): 99-105 . 百度学术
其他类型引用(0)