高级检索

高熵合金研究进展

宋鑫芳, 张勇

宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040003
引用本文: 宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040003
SONG Xin-fang, ZHANG Yong. Progress of high entropy alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 451-457. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040003
Citation: SONG Xin-fang, ZHANG Yong. Progress of high entropy alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 451-457. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040003

高熵合金研究进展

详细信息
    通讯作者:

    张勇: E-mail: drzhangy@ustb.edu.cn

  • 中图分类号: TG135

Progress of high entropy alloys

More Information
  • 摘要:

    高熵合金突破了传统合金成分的限制,通过调配多种组元的排列组合和含量,赋予了高熵合金高强度、高韧性、高硬度、低温韧性、耐腐蚀和抗辐照等优异的力学性能和功能性能,在众多领域表现出了巨大的应用潜力。高熵合金目前主要有三个代表性的种类:以3d过渡族金属为主的Cantor合金(CoCrFeMnNi);以难熔金属为主的Senkov合金(NbMoTaW);以铝镁钛等轻质元素为主的低密度高熵合金(AlMgLiZnCu, AlMgZnCuSi, AlZrTiNbMo)。本文从高熵合金的概念出发,详细介绍了高熵合金的制备工艺,讨论了如何制备具有高强度‒高塑形、优秀磁性能‒力学性能以及高强度‒高导电性、轻质‒高强度等优异综合性能的高熵合金,并对高熵合金未来的发展趋势进行了展望。

    Abstract:

    High entropy alloy breaks through the limitation of traditional alloy composition, rendering a great possibility to constitute alloys by using the entropic conceptions. It provides a novel way for the development of new materials, which usually exhibits excellent mechanical and functional properties, such as high strength, high toughness, high hardness, exceptionally excellent low temperature toughness, excellent corrosion resistance, and radiation resistance, showing the great application potential in many fields. Up to now, three typical high entropy alloys have been developed: Cantor alloy (CoCrFeNiMn) which mainly composed of 3d transitional elements; Senkov alloy (NbMoTaW), mainly contains refractory elements; Lightweight and low density high entropy alloys (AlMgLiZnCu, AlMgZnCuSi, AlZrTiNbMo). Based on the concept of high-entropy-alloy, the processing of high entropy alloys was introduced in detail, and how to prepare the high entropy alloys with the excellent combination performance (high strength‒high toughness, excellent magnetism‒ mechanical properties, and high strength‒high electrical conductivity) was discussed. Finally, the development trend of high entropy alloys in the future was prospected.

  • 碳化钛(TiC)具有高硬度、高熔点、导电性好、耐腐蚀、抗高温等优点,被广泛应用于工业工程、航空航天、核工业等领域[13]。由于TiC具有强的共价键,烧结性较差,影响了TiC陶瓷的力学性能,并限制了TiC陶瓷的应用[4]。通常,通过添加第二相(WC、ZrC、SiC、TiN等)以及金属相(Ti、Mo、Co、Ni、Cr等)改善TiC陶瓷的烧结性,提高陶瓷力学性能[57]。氮化钛(TiN)具有硬度高、熔点高、化学稳定性好、摩擦系数低、导电性能好、颜色独特且可变等特点,被广泛应用于机械工业、生物医疗、导电材料等领域[8]。在一定条件下,TiN可与TiC形成TiCxNy固溶体,TiCxNy固溶体的韧性和化学稳定性优于TiC,硬度和耐磨性优于TiN,故将两者复合形成固溶体,可兼容TiC和TiN的优势[910]。此外,WC、HfN与TiC、TiN或TiCN有较好的物理化学相容性[1112],它们是TiC、TiN或TiCN陶瓷材料的理想增强相。金属相不仅可改善TiC、TiN陶瓷材料的微观组织,还可提高材料的力学性能。金属Ni对TiC和TiB2陶瓷材料有较好的润湿性,随着Ni含量的增加,TiC–TiB2材料的硬度、抗弯强度和断裂韧度均有所提高[13];适量的Mo能够细化TiC–TiN–WC陶瓷材料的晶粒且能提高陶瓷的抗弯强度[9];Ti作为TiC陶瓷材料的粘结剂,可以使材料获得高的相对密度[14]。金属Re是一种熔点高、稳定性好的金属,也是陶瓷材料的理想添加剂。Zi等[15]发现Re可改善Ni与Al2O3陶瓷间的润湿性。Marcin和Anna[16]发现在Cr–Al2O3复合材料中加入Re可提高材料的摩擦磨损性能。但是,目前有关Re对TiC、TiN、TiCN陶瓷材料性能影响方面的报道较少。

    本研究以TiC和TiN为基体,以WC和HfN为增强相,以Ni和Re为金属相,通过热压烧结技术制备TiCN–WC–HfN陶瓷,研究Re含量(摩尔分数)对材料微观组织和力学性能的影响。

    制备TiCN–WC–HfN陶瓷所用TiC、TiN、WC、HfN、Ni、Re粉末均来自上海允复纳米科技有限公司,粉末平均粒径均为0.5 μm,纯度均大于99%,具体组分及含量见表1

    表  1  TiCN–WC–HfN陶瓷组分及含量(摩尔分数)
    Table  1.  Composition and content of the TiCN–WC–HfN ceramics %
    材料编号TiCTiNWCHfNNiRe
    R03030151510.00
    R1303015158.02.0
    R2303015157.52.5
    R3303015157.03.0
    下载: 导出CSV 
    | 显示表格

    根据表1称量原料粉末,置于球磨罐中进行球磨,球磨介质为硬质合金球和无水乙醇,球磨时间72 h。将球磨后的浆料置入干燥箱中干燥。随后,用100目的网筛过筛,倒入直径为50 mm的石墨模具中,完成素坯的制备。使用ZT-40-20型真空热压烧结炉烧结素坯,其中烧结温度为1550 ℃,保温时间为60 min,升温速率为10 ℃·min−1,烧结压力为30 MPa。烧结后的材料经切割、粗磨、细磨、抛光等工艺制成3 mm×4 mm×40 mm的试样条。

    依据GB/T6569-2006[17]采用三点抗弯法在CREE-8003G材料试验机上测试材料的抗弯强度,其跨距为30 mm,加载速度为0.5 mm·min−1。依据GB/T16534-2009[18]在HVS-30硬度计上测试材料的维氏硬度,加载载荷196 N,保压15 s。采用压痕法[19]测试材料的断裂韧度。力学性能的测试均以15个测试结果的算术平均值作为测试结果。使用RAY-10AX-X-ray型X射线衍射仪(X-ray diffraction,XRD)和能谱仪(energy disperse spectroscope,EDS)分析材料的物相组成,并通过Supra-55型扫描电镜(scanning electron microscope,SEM)观察材料的抛光面和断口形貌。

    图1是所制备TiCN–WC–HfN(R3)陶瓷的X射线衍射图谱。由图1可见,陶瓷试样的主要相为TiC0.41N0.50、WC、HfN和TiC,同时,含有少量的Ni和Re。图谱中未发现TiN,而有大量TiC0.41N0.50固溶体和一定量TiC,这表明在热压烧结过程中,几乎所有TiN与大部分TiC发生了固溶,形成了TiC0.41N0.50固溶体。Verma等[20]在研究TiCN基陶瓷材料时发现了少量(Ti,W)(C,N)固溶体,但在本研究的X射线衍射图谱中并未发现,可能是其含量较少,无法被检测到。

    图  1  TiCN–WC–HfN(R3)陶瓷X射线衍射图谱
    Figure  1.  XRD patterns of the TiCN–WC–HfN (R3) ceramics

    图2是TiCN–WC–HfN陶瓷的抛光面形貌及相组成。由图2(a)可见,材料由黑色相、白色相、浅灰色相和深灰色相组成。由图2(b)可见,深灰色相所占面积最大,其次依次为浅灰色、白色相和黑色相。图3是各相的能谱分析。由图3(a)可见,黑色相中的C和Ti元素含量较高,其中C的原子数分数为42.88%,Ti的原子数分数为42.40%,其比接近1:1,结合X射线衍射图谱分析可知,黑色相的主要成分是TiC。同理,由图3(b)可见,白色相中N和Hf元素含量较高,其中N的原子数分数为43.09%,Hf的原子数分数为41.52%,其比接近1:1,结合X射线衍射图谱结果可知,白色相的主要成分是HfN。由图3(c)可见,浅灰色相中C和W元素含量较高,其原子数分数分别为47.31.%和44.92%,其比接近1:1,结合X射线衍射图谱分析可知,浅灰色相的主要成分是WC。浅灰色相的边界较为平直,晶粒形貌近似四边形,这与杨方等[21]所报道的WC形貌基本一致。由图3(d)可见,深灰色相中Ti、C和N原子含量较高,其原子数分数分别为48.41%、19.27%和25.06%,其比接近1.0:0.4:0.5,结合X射线衍射图谱分析可知,深灰色相的主要成分是TiC0.41N0.50。此外,陶瓷相在液相金属Ni和Re中完成溶解–析出–结晶后,Ni和Re会粘附在晶粒周围;同时,在烧结压力的作用下,液相金属Ni和Re会填充到晶粒间的空隙中;Ni和Re在黑色相、白色相、浅灰色相和深灰色相的能谱中均有体现,但其含量相对较低。

    图  2  TiCN–WC–HfN陶瓷显微形貌(a)及相组成(b)
    Figure  2.  Microstructure (a) and phase composition (b) of the TiCN–WC–HfN ceramics
    图  3  TiCN–WC–HfN陶瓷各相能谱分析:(a)黑色相;(b)白色相;(c)浅灰色相;(d)深灰色相
    Figure  3.  EDS analysis of the TiCN–WC–HfN ceramics: (a) black phase; (b) white phase; (c) light gray phase; (d) gray phase

    图4是TiCN–WC–HfN陶瓷的断口形貌。由图可见,随着Re摩尔分数从0增到3.0%,晶粒呈先变大后变小的趋势,甚至发生了晶粒聚集,如图中虚线框所示,这表明Re在一定程度上具有抑制晶粒长大的作用。同时,在试样R0~试样R3中均存在凹坑,如图中实线圆圈所示,且试样R2中的凹坑最多。这些凹坑是由材料中小晶粒拔出所致(如图中箭头所示);在材料的断裂过程中,这些小晶粒可起到钉扎作用,这有利于材料力学性能的提高。另外,试样中均存在解理面(如图中实线框所示),试样R0中的解理面相对较少,晶粒断面相对平整;而试样R1~试样R3中的解理面较多,这表明晶粒断裂时非一次性直接断裂,而是在外力的作用下逐渐断裂,这种断裂会消耗更多的断裂能,有利于材料抗弯强度和断裂韧度的提高。试样R0和试样R3存在晶粒聚集现象,其中试样R3中的晶粒发生了严重聚集,这会削弱材料的力学性能。

    图  4  TiCN–WC–HfN陶瓷断口形貌:(a)R0;(b)R1;(c)R2;(d)R3
    Figure  4.  Fracture morphologies of the TiCN–WC–HfN ceramics: (a) R0; (b) R1; (c) R2; (d) R3

    图5是Re含量(摩尔分数)对TiCN–WC–HfN陶瓷力学性能的影响。由图可见,当Re的摩尔分数由0增到3.0%时,材料的硬度、抗弯强度和断裂韧度均先增大后减小;当Re的摩尔分数为2.5%时,材料的力学性能最优,其维氏硬度为(19.25±0.21) GPa、抗弯强度为(1304±23) MPa、断裂韧度为(7.73±0.22) MPa∙m1/2;而当Re摩尔分数为0时,材料的力学性能分别为(18.04±0.18) GPa、(1021±19) MPa和(7.11±0.19) MPa∙m1/2。当Re摩尔分数为2.5%时,材料在断裂过程中,其断口上较多的小晶粒被拔出形成凹坑,以及晶粒在断裂过程中形成解离面都需要消耗大量的断裂能,这是其力学性能较高的主要原因。当Re摩尔分数为3.0%时,材料的抗弯强度和维氏硬度发生了较大幅度的降低,这是由晶粒的严重聚集造成的。

    图  5  Re含量对TiCN–WC–HfN陶瓷力学性能的影响
    Figure  5.  Relationship between the Re content and mechanical properties of the TiCN–WC–HfN ceramics

    图6为TiCN–WC–HfN(R3)陶瓷的裂纹扩展路径。由图可见,裂纹扩展时发生了偏转和桥连。裂纹偏转和裂纹桥连会消耗更多的断裂能,这有利于材料断裂韧度的提高[22]。此外,在裂纹扩展时,存在沿晶扩展和穿晶扩展,即材料在断裂时发生了沿晶断裂和穿晶断裂,这种沿晶与穿晶并存的断裂方式也有助于材料断裂韧度的提高[23]

    图  6  TiCN–WC–HfN(R3)陶瓷裂纹扩展路径
    Figure  6.  Crack propagation of the TiCN–WC–HfN (R3) ceramics

    (1)烧结后的TiCN–WC–HfN–Ni–Re陶瓷材料由TiC0.41N0.50、WC、HfN、TiC、Ni和Re组成,其中TiC0.41N0.50是TiC与TiN在烧结过程中生成的固溶体。

    (2)在TiCN–WC–HfN陶瓷的断口上存在凹坑和解理面。当Re摩尔分数为0时,其断口上的解理面相对较少,晶粒的断面相对平整;当Re摩尔分数为2.5%时,材料断口上的凹坑较多;当Re摩尔分数为0和3.0%时,材料断口上存在晶粒聚集的现象。

    (3)当Re摩尔分数由0增到3.0%时,材料的硬度、抗弯强度和断裂韧度均先增大后减小。当Re摩尔分数为2.5%时,材料的力学性能最优,其维氏硬度为(19.25±0.21) GPa、抗弯强度为(1304±23) MPa、断裂韧度为(7.73±0.22) MPa∙m1/2。材料在断裂过程中存在穿晶断裂和沿晶断裂,裂纹发生了偏转和桥连。

  • 图  1   高熵合金粉末(a)和放电等离子烧结WC–HEA硬质合金(b)

    Figure  1.   High entropy alloy powders (a) and the WC–HEA cemented carbide by spark plasma sintering (b)

    图  2   Fe28.5Co47.5Ni19Al1.6Si3.4高熵合金和纯Al多孔骨架复合结构

    Figure  2.   Porous skeleton composite structure of the Fe28.5Co47.5Ni19Al1.6Si3.4 high entropy alloys and the pure Al

    图  3   (Zr0.5Ti0.35Nb0.15)100‒xAlx高熵合金室温拉伸和压缩性能[19]

    Figure  3.   Tensile and compressive properties of the (Zr0.5Ti0.35Nb0.15)100‒xAlx alloys at room temperature[19]

    图  4   (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5高熵软磁合金性能[23]:(a)磁性能;(b)室温拉伸性能

    Figure  4.   Properties of the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 high entropy soft magnetic alloys[23]: (a) magnetic properties; (b) tensile properties at room temperature

    图  5   混合粉末物相(a)、微观形貌(b)和成分分析(c)及烧结Cu–10 %WTaNbMo合金拉伸性能(d)

    Figure  5.   Phase (a), morphology (b), and composition (c) analyses of the milled powers and the tensile properties of the sintered Cu–10 %WTaNbMo alloy (d)

  • [1]

    Tsai M H, Yeh J W. High-entropy alloys: a critical review. Mater Res Lett, 2014, 2(3): 107 DOI: 10.1080/21663831.2014.912690

    [2]

    Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today, 2016, 19(6): 349 DOI: 10.1016/j.mattod.2015.11.026

    [3]

    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 DOI: 10.1016/j.pmatsci.2013.10.001

    [4]

    Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater, 2018, 61(1): 2 DOI: 10.1007/s40843-017-9195-8

    [5]

    Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep, 2014, 4: 6200

    [6]

    Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143 DOI: 10.1016/j.actamat.2016.11.016

    [7]

    Anand Sekhar R, Samal S, Nayan N, et al. Microstructure and mechanical properties of Ti–Al–Ni–Co–Fe based high entropy alloys prepared by powder metallurgy route. J Alloys Compd, 2019, 787: 123 DOI: 10.1016/j.jallcom.2019.02.083

    [8]

    Pan J Y, Dai T, Lu T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A, 2018, 738: 362 DOI: 10.1016/j.msea.2018.09.089

    [9]

    Tang Z, Senkov O N, Parish C M, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A, 2015, 647: 229 DOI: 10.1016/j.msea.2015.08.078

    [10]

    Chen S Y, Tong Y, Liaw P K. Additive manufacturing of high-entropy alloys: a review. Entropy (Basel), 2018, 20(12): 937 DOI: 10.3390/e20120937

    [11]

    Luo S C, Zhao C Y, Su Y, et al. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms. Addit Manuf, 2020, 31: 100925

    [12]

    Wang Y, Li R D, Niu P D, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics, 2020, 120: 106746 DOI: 10.1016/j.intermet.2020.106746

    [13]

    Dhanaraj P S, Rathinasuriyan C. Optimization of fiber laser welding parameters for high strength aluminium alloy AA7075-T6. Mater Today Proc, 2021, 52: 283

    [14]

    Zhang Q H, Li J G, Jiang K, et al. Gradient structure induced simultaneous enhancement of strength and ductility in AZ31 Mg alloy with twin-twin interactions. J Magnesium Alloys, 2021, 10: 014

    [15]

    Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 534(7606): 227 DOI: 10.1038/nature17981

    [16]

    Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 DOI: 10.1038/s41586-018-0685-y

    [17]

    Pan Q S, Zhang L X, Feng R, et al. Gradient-cell-structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374(6570): 984 DOI: 10.1126/science.abj8114

    [18]

    Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373(6557): 912 DOI: 10.1126/science.abf6986

    [19]

    Yan X H, Liaw P K, Zhang Y. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. J Mater Sci Technol, 2022, 110: 109 DOI: 10.1016/j.jmst.2021.08.034

    [20]

    Chaudhary V, Mantri S A, Ramanujan R V, et al. Additive manufacturing of magnetic materials. Prog Mater Sci, 2020, 114: 100688 DOI: 10.1016/j.pmatsci.2020.100688

    [21]

    Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep, 2013, 3(1): 1

    [22]

    Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNix (x=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 DOI: 10.1016/j.actamat.2017.03.013

    [23]

    Zhang Y, Zhang M, Li D Y, et al. Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0. 5Ni0. 2)100−x(Al1/3Si2/3)x system. Metals, 2019, 9(3): 382 DOI: 10.3390/met9030382

    [24]

    Han L L, Rao Z Y, Souza Filho I R, et al. Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv Mater, 2021, 33(37): 2102139 DOI: 10.1002/adma.202102139

    [25]

    Kim H, Ahn J H, Han S Z, et al. Microstructural characterization of cold-drawn Cu–Ni–Si alloy having high strength and high conductivity. J Alloys Compd, 2020, 832: 155059 DOI: 10.1016/j.jallcom.2020.155059

    [26]

    Sun C F, Guo Y C, Yang Z, et al. Microstructurally stable nanocomposite WTaMoNb/Cu prepared by mechanical alloying and hot pressing sintering. Mater Lett, 2022, 306: 130894 DOI: 10.1016/j.matlet.2021.130894

    [27]

    Li Y S, Zhang Y. Light-weight and flexible high entropy alloys // High Entropy Alloys. London:IntechOpen Limited, 2019: 1

    [28]

    Li Y S, Liaw P K, Zhang Y. Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys. Metals, 2022, 12(3): 496 DOI: 10.3390/met12030496

    [29]

    Li R X, Zheng R, Wu Y, et al. Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy. Mater Sci Eng:A, 2021, 802: 140637 DOI: 10.1016/j.msea.2020.140637

    [30]

    Shao L, Zhang T, Li L, et al. A low-cost lightweight entropic alloy with high strength. J Mater Eng Perform, 2018, 27(12): 6648 DOI: 10.1007/s11665-018-3720-0

  • 期刊类型引用(2)

    1. 初建鹏,冯建程,鞠翔宇,姜涛. 动载作用下高强度钢的层裂特性研究. 兵器材料科学与工程. 2024(02): 129-135 . 百度学术
    2. 班伟,陈嘉琪,刘璐璐,葛涛,张帅. 紧耦合气雾化喷嘴流场特性研究. 粉末冶金技术. 2024(03): 312-319 . 本站查看

    其他类型引用(0)

图(5)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  5102
  • PDF下载量:  434
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-11
  • 录用日期:  2022-05-11
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-10-27

目录

/

返回文章
返回