高级检索

数值模拟在粉末压制细观分析中的应用与发展

陈新宇, 李奋强, 蒋继帅

陈新宇, 李奋强, 蒋继帅. 数值模拟在粉末压制细观分析中的应用与发展[J]. 粉末冶金技术, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
引用本文: 陈新宇, 李奋强, 蒋继帅. 数值模拟在粉末压制细观分析中的应用与发展[J]. 粉末冶金技术, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
Citation: CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001

数值模拟在粉末压制细观分析中的应用与发展

基金项目: 福建省自然科学基金资助项目(2021J011212)
详细信息
    通讯作者:

    李奋强: E-mail: lfq@xmut.edu.cn

  • 中图分类号: TF124

Application and development of numerical simulation on mesoscopic analysis of powder compaction

More Information
  • 摘要:

    数值模拟技术已经成为研究粉末压制过程的重要手段。研究人员运用离散单元法(discrete element method,DEM)从细观角度研究粉末颗粒的力学行为,分析力链特性及力链演化过程,揭示细观结构对宏观性质的影响;使用多粒子有限元法(multi-particle finite element method,MPFEM)从颗粒层面对不同粉末的压制变形机理进行研究。本文对离散单元法和多粒子有限元法两种数值模拟方法在粉末压制中的应用及发展进行综述,总结了多粒子有限元法在粉末压制数值模拟中的难点,分析得到在动态载作用下对粉末力链演化规律及颗粒致密机理的研究可作为未来探索方向的展望。

    Abstract:

    In recent years, numerical simulation technology has become an important method to study the powder compaction process. The discrete element method (DEM) is used to study the mechanical behavior of powder particles from the mesoscopic perspective, analyze the characteristics and evolution process of force chain, and reveal the influence of the mesoscopic structure on the macroscopic properties. The multi-particle finite element method (MPFEM) is used to study the compression deformation mechanisms of the different powders at the particle level. The application and development of DEM and MPFEM on the powder compaction were reviewed in this paper, and the difficulties of MPFEM used in powder compaction were summarized.It was concluded that the study on the evolution law of powder force chain and the mechanism of particle densification under the dynamic loading could be regarded as a prospect for future exploration

  • 图  1   颗粒摩擦系数与轴向应变关系[10]

    Figure  1.   Relationship between the particle friction coefficient and axial strain[10]

    图  2   轴向应变与力链演变[17]:(a)轴向应变0%;(b)轴向应变4%;(c)轴向应变7%;(d)轴向应变13%

    Figure  2.   Evolution of force chain with the different axial strain[17]: (a) axial strain 0; (b) axial strain 4%; (b) axial strain 7%; (b) axial strain 13%

    图  3   力链特性的变化[21]:(a)数目;(b)长度;(c)强度;(d)准直性

    Figure  3.   Changes of the force chain properties[21]: (a) number; (b) length; (c) strength; (d) collimation

    图  4   压实压力和Fe/Al粉末粒径比(RFe/RAl)对压坯相对密度的影响[30]

    Figure  4.   Influence of compaction pressure and Fe/Al powder size ratio (RFe/RAl) on the relative density of compact[30]

    图  5   压实压力和TiC/316L粉末粒径比(R316L/RTiC)对压坯相对密度的影响[32]

    Figure  5.   Influence of compaction pressure and TiC/316L powder size ratio (R316L/RTiC) on the relative density of compact[32]

    图  6   NaCl/Al混合粉末的压实压力和相对密度实验数据和仿真结果[33]

    Figure  6.   Experimental data and simulation results of compaction pressure and relative density for the NaCl/Al mixture powders[33]

    图  7   不同温度下相对密度与压力关系[37]

    Figure  7.   Relationship between relative density and pressure at the different temperatures[37]

    图  8   总应变能随压力和温度变化关系[37]

    Figure  8.   Relationship of the total strain energy, pressure, and temperature[37]

    图  9   随机结构压制过程[38]

    Figure  9.   Random packing compressing process[38]

    图  10   屈服面和粘结强度函数图[40]

    Figure  10.   Yield surfaces as the function of cohesion strength[40]

    图  11   孔隙边缘节点Von Mises应力分布[42]

    Figure  11.   Von Mises stress distribution at the pore edge nodes[42]

    图  12   应力释放前后节点Von Mises应力[42]

    Figure  12.   Nodal Von Mises stress before and after stress release[42]

    图  13   单位质量能量和摩擦系数对回弹率的影响[28]

    Figure  13.   Influence of unit mass energy and friction coefficient on springback[28]

    图  14   卸压后回弹初始模型[28]

    Figure  14.   Initial model of resilience after unload[28]

    图  15   W−Cu颗粒模压模拟和实验验证[27]

    Figure  15.   Molding simulation and experimental verification of W−Cu particles[27]

    图  16   致密化过程中粒子的平均等效应变[27]

    Figure  16.   Average equivalent strain of particles during densification[27]

  • [1] 孙其诚, 刘晓星, 张国华, 等. 密集颗粒物质的介观结构. 力学进展, 2017, 47: 263 DOI: 10.6052/1000-0992-16-021

    Sun Q C, Liu X X, Zhang G H, et al. The mesoscopic structures of dense granular materials. Adv Mech, 2017, 47: 263 DOI: 10.6052/1000-0992-16-021

    [2] 尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49

    You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49

    [3] 郭岩岩, 历长云, 冀国良, 等. 粉末致密化过程数值模拟研究现状. 材料导报, 2022, 36(18): 174 DOI: 10.11896/cldb.20080161

    Guo Y Y, Li C Y, Ji G L, et al. Research status of numerical simulation of powder densification process. Mater Rep, 2022, 36(18): 174 DOI: 10.11896/cldb.20080161

    [4] 孙其诚, 王光谦. 颗粒物质力学导论. 北京: 科学出版社, 2009

    Sun Q C, Wang G Q. Introduction to the Mechanics of Particulate Matter. Beijing: Science Press, 2009

    [5] 颜士伟, 黄尚宇, 胡建华, 等. 数值仿真技术在粉末冶金零件制造中的应用及研究进展. 粉末冶金技术, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    [6]

    Sun Q C, Jin F, Liu J G. Understanding force chains in dense granular materials. Int J Mod Phys B, 2010, 24(29): 5743 DOI: 10.1142/S0217979210055780

    [7]

    Guo P J. Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech, 2012, 7: 41 DOI: 10.1007/s11440-011-0154-3

    [8] 孟凡净, 刘华博, 花少震, 等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析. 应用力学学报, 2021, 38(3): 1286 DOI: 10.11776/cjam.38.03.B057

    Meng F J, Liu H B, Hua S Z, et al. Analysis of friction mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing. Chin J Appl Mechs, 2021, 38(3): 1286 DOI: 10.11776/cjam.38.03.B057

    [9] 张炜, 谈健君, 张帅, 等. 基于颗粒物质力学的铁粉末压制中摩擦特性对力链演化影响. 摩擦学学报, 2022, 42(2): 386

    Zhang W, Tan J J, Zhang S, et al. Influence of tribological characteristics on the evolution of force chains in ferrous powder compaction based on granular matter theory. Tribology, 2022, 42(2): 386

    [10]

    Zhang N, Zhang S, Tan J J, et al. Correlation mechanism between force chains and friction mechanism during powder compaction. Chin Phys B, 2022, 31(2): 486

    [11]

    Zhang W, Zhang S, Tan J, et al. Investigation on the friction mechanism and its relation to the force chains during powder compaction. J Phys Soc Jpn, 2020, 89(12): 124602 DOI: 10.7566/JPSJ.89.124602

    [12]

    Zhang W, Zhang S, Tan J, et al. Relation between force chain quantitative characteristics and side wall friction behaviour during ferrous powder compaction. Granular Matter, 2022, 24(3): 86 DOI: 10.1007/s10035-022-01244-4

    [13]

    Peters J F, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material. Phys Rev E, 2005, 72: 041307

    [14]

    Bassett D S, Owens E T, Porter M A, et al. Extraction of force-chain network architecture in granular materials using community detection. Soft Matter, 2015, 11: 2731 DOI: 10.1039/C4SM01821D

    [15]

    Huang Y M, Daniels K E. Friction and pressure dependence of force chain communities in granular materials. Granular Matter, 2016, 18: 85 DOI: 10.1007/s10035-016-0681-6

    [16] 王飞, 刘焜, 王伟. 颗粒的堵塞行为对单向压制过程的影响. 应用力学学报, 2014, 31(3): 400 DOI: 10.11776/cjam.31.03.D028

    Wang F, Liu K, Wang W. Simulation of jamming phenomenon of granular matter under single-action pressing process. Chin J Appl Mech, 2014, 31(3): 400 DOI: 10.11776/cjam.31.03.D028

    [17] 张炜, 周剑, 于世伟, 等. 双轴压缩下颗粒物质接触力与力链特性研究. 应用力学学报, 2018, 35(3): 530

    Zhang W, Zhou J, Yu S W, et al. Investigation on contact force and force chain of granular matter in biaxial compression. Chin J Appl Mech, 2018, 35(3): 530

    [18] 张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98

    Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98

    [19]

    Zhang L R, Nguyen N G H, Lambert S, et al. The role of force chains in granular materials: from statics to dynamics. Eur J Environ Civ Eng, 2017, 21(7-8): 874 DOI: 10.1080/19648189.2016.1194332

    [20] 张炜, 周剑, 于世伟, 等. 基于颗粒物质力学的粉末高速压制过程中应力传递分布分析. 应用力学学报, 2018, 35(1): 154

    Zhang W, Zhou J, Yu S W, et al. Investigation of the stress transmission characterization in highvelocity powder compaction based on mechanics of granular materials. Chin J Appl Mech, 2018, 35(1): 154

    [21] 张炜, 周剑, 于世伟, 等. 离散元法金属粉末高速压制过程中力链特性量化研究. 机械工程学报, 2018, 54(10): 85 DOI: 10.3901/JME.2018.10.085

    Zhang W, Zhou J, Yu S W, et al. Quantitative investigation on force chains of metal powder in high velocity compaction by discrete element method. J Mech Eng, 2018, 54(10): 85 DOI: 10.3901/JME.2018.10.085

    [22] 王海陆, 刘军, 林立, 等. 基于离散元的不同粒径配比粉末压制相对密度与力链分析. 粉末冶金技术, 2021, 39(6): 490

    Wang H L, Liu J, Lin L, et al. Compacting relative density and force chain analysis of powders with different particle sizes and proportions based on discrete element. Powder Metall Technol, 2021, 39(6): 490

    [23]

    Zhang L, Wang Y J, Zhang J. Force-chain distributions in granular systems. Phys Rev E, 2014, 89(1): 012203 DOI: 10.1103/PhysRevE.89.012203

    [24]

    Gendelman O, Pollack Y G, Procaccia I, et al. What determines the static force chains in stressed granular media? Phys Rev Lett, 2016, 116(7): 078001

    [25]

    Iikawa N, Bandi M M, Katsuragi H. Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys Rev Lett, 2016, 116(12): 128001 DOI: 10.1103/PhysRevLett.116.128001

    [26] 李达. 铁基粉末高速压制的数值模拟分析[学位论文]. 合肥: 合肥工业大学, 2014

    Li D. Numerical Simulation Analysis of High-Speed Compaction of Iron-Based Powder [Dissertation]. Hefei: Hefei University of Technology, 2014

    [27]

    Peng K F, Pan H, Zheng Z J, et al. Compaction behavior and densification mechanisms of Cu−W composite powders. Powder Technol, 2021, 382: 478 DOI: 10.1016/j.powtec.2021.01.013

    [28]

    Zhou J, Zhu C Y, Zhang W, et al. Experimental and 3D MPFEM simulation study on the green density of Ti–6Al–4V powder compact during uniaxial high velocity compaction. J Alloys Compd, 2020, 817: 153226 DOI: 10.1016/j.jallcom.2019.153226

    [29]

    Han P, An X Z, Zhang Y X, et al. Particulate scale MPFEM modeling on compaction of Fe and Al composite powders. Powder Technol, 2017, 314: 69 DOI: 10.1016/j.powtec.2016.11.021

    [30]

    Han P, An X Z, Wang D F, et al. MPFEM simulation of compaction densification behavior of Fe−Al composite powders with different size ratios. J Alloys Compd, 2018, 741: 473 DOI: 10.1016/j.jallcom.2018.01.198

    [31]

    Huang F, An X Z, Zhang Y X, et al. Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders. Powder Technol, 2017, 314: 39 DOI: 10.1016/j.powtec.2017.03.017

    [32]

    Wang D F, An X Z, Han P, et al. Particulate scale numerical investigation on the compaction of TiC-316L composite powders. Math Prob Eng, 2020, 2020(Pt.6): 5468076.1

    [33]

    Feng Y B, Mei D Q, Wang Y C. Cohesive zone method based multi particle finite element simulation of compaction densification process of Al and NaCl laminar composite powders. J Phy Chem Solids, 2019, 134: 35 DOI: 10.1016/j.jpcs.2019.05.020

    [34]

    Xu L, Wang Y S, Li C Y, et al. MPFEM simulation on hot-pressing densification process of SiC particle/6061Al composite powders. J Phy Chem Solids, 2021, 159: 110259 DOI: 10.1016/j.jpcs.2021.110259

    [35]

    Li M, Lim C V S, Zou R P, et al. Multi-particle FEM modelling on hot isostatic pressing of Ti6Al4V powders. Int J Mech Sci, 2021, 196: 106288 DOI: 10.1016/j.ijmecsci.2021.106288

    [36]

    Jia Q, An X Z, Zhao H Y, et al. Compaction and solid-state sintering of tungsten powders: MPFEM simulation and experimental verification. J Alloys Compd, 2018, 750: 341 DOI: 10.1016/j.jallcom.2018.03.387

    [37]

    Zou Y, An X Z, Zou R P. Investigation of densification behavior of tungsten powders during hot isostatic pressing with a 3D multi-particle FEM approach. Powder Technol, 2020, 361: 297 DOI: 10.1016/j.powtec.2019.08.014

    [38]

    Zhang Y X, An X Z, Zhang Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction. Appl Phys A, 2015, 118: 1015 DOI: 10.1007/s00339-014-8861-x

    [39]

    Zou Y, An X Z, Jia Q, et al. Three-dimensional MPFEM modelling on isostatic pressing and solid phase sintering of tungsten powders. Powder Technol, 2019, 354: 854 DOI: 10.1016/j.powtec.2019.07.013

    [40]

    Loidolt P, Ulz M H, Khinast J. Modeling yield properties of compacted powder using a multi-particle finite element model with cohesive contacts. Powder Technol, 2018, 336: 426 DOI: 10.1016/j.powtec.2018.06.018

    [41]

    Loidolt P, Ulz M H, Khinast J. Prediction of the anisotropic mechanical properties of compacted powders. Powder Technol, 2019, 345: 589 DOI: 10.1016/j.powtec.2019.01.048

    [42]

    Zhou L W, Han P, Liu K, et al. Particulate scale multiparticle finite element method modeling on the 2D compaction and release of copper powder. Math Prob Eng, 2019, 2019(Pt.23): 5269302.1

    [43]

    Güner F, Cora Ö N, Sofuoğlu H. Numerical modeling of cold powder compaction using multi particle and continuum media approaches. Powder Technol, 2015, 271: 238 DOI: 10.1016/j.powtec.2014.11.008

    [44]

    Güner F, Cora Ö N, Sofuoğlu H. Effects of friction models on the compaction behavior of copper powder. Tribol Int, 2018, 122: 125 DOI: 10.1016/j.triboint.2018.02.022

    [45]

    Güner F, Sofuoğlu H. Effects of process parameters on copper powder compaction process using multi-particle finite element method. IOP Conf Ser Mater Sci Eng, 2018, 295: 012027 DOI: 10.1088/1757-899X/295/1/012027

图(16)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  989
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2024-08-27

目录

    /

    返回文章
    返回