高级检索

高温钛合金及钛基复合材料增材制造技术研究现状

高楚寒, 吴文恒, 张亮

高楚寒, 吴文恒, 张亮. 高温钛合金及钛基复合材料增材制造技术研究现状[J]. 粉末冶金技术, 2023, 41(1): 55-62. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050006
引用本文: 高楚寒, 吴文恒, 张亮. 高温钛合金及钛基复合材料增材制造技术研究现状[J]. 粉末冶金技术, 2023, 41(1): 55-62. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050006
GAO Chuhan, WU Wenheng, ZHANG Liang. Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites[J]. Powder Metallurgy Technology, 2023, 41(1): 55-62. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050006
Citation: GAO Chuhan, WU Wenheng, ZHANG Liang. Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites[J]. Powder Metallurgy Technology, 2023, 41(1): 55-62. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050006

高温钛合金及钛基复合材料增材制造技术研究现状

基金项目: 上海市“科技创新行动计划”长三角科技创新共同体领域资助项目(21002420200);上海市青年科技启明星计划资助项目(22QB1401300)
详细信息
    通讯作者:

    吴文恒: E-mail: wwhwwh2004@126.com

  • 中图分类号: TB31; TB331

Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites

More Information
  • 摘要:

    高温钛合金及钛基复合材料因具有比强度高、比刚度高、耐腐蚀、耐高温等优异性能,近几年来受到了广泛的关注。钛基复合材料的力学性能往往与增强相组织有关,增材制造技术的快速凝固可以使颗粒增强钛基复合材料中晶粒细化,力学性能得到提升。本文综述了高温钛合金及钛基复合材料的研究进展,分析了增强相组织对材料力学性能的影响,总结了增材制造技术制备钛基梯度功能材料的应用。通过增材制造技术制备钛基复合材料不仅可以提高复合材料的硬度和强度,还可以提高复合材料的延展性,采用增材制造技术制备高性能钛基复合材料将会成为未来的发展趋势。

    Abstract:

    High temperature titanium alloys and titanium matrix composites (TMCs) have attracted the extensive attention in recent years due to the excellent properties, such as high specific strength, high specific stiffness, high corrosion resistance, and high temperature resistance. The mechanical properties of the titanium matrix composites are often related to the reinforcing phase microstructures. The rapid solidification of additive manufacturing technology can refine particles and improve the mechanical properties of the particle-reinforced titanium matrix composites. The research progress of high temperature titanium alloys and titanium matrix composites was reviewed in this paper. The influence of the reinforcing phase on the mechanical properties of the titanium alloys and titanium matrix composites was analyzed, and the application of additive manufacturing technology used for the titanium-based gradient functional materials was summarized. The additive manufacturing technology can not only improve the hardness and strength of the particle-reinforced titanium matrix composites, but also increase the ductility of the composites, which will become the future development trend.

  • 硬质合金是以难熔金属碳化物(WC、TiC、TaC等)为硬质相,以过渡金属元素(Co、Ni、Fe等)为粘结相,采用粉末冶金方法制备的复合材料[12]。硬质合金具有高强度、高硬度、高弹性模量、高耐磨损、高耐腐蚀、低热膨胀系数以及高化学稳定性等优点,被广泛地应用于拉丝模具、机械加工、耐磨耐腐蚀零件以及结构部件等领域,被誉为“工业的牙齿”[36]

    自1923年发展至今,硬质合金的材料体系、WC晶粒尺寸、微观结构类型不断得到丰富与发展[79]。均匀结构硬质合金是指内部微观结构均匀一致,具有相同成分、组织及性能的硬质合金[10]。根据WC晶粒大小,均匀结构硬质合金可分为纳米及超细晶硬质合金、超粗晶硬质合金和双晶硬质合金等[1118]。均匀结构硬质合金由陶瓷硬质相和金属粘结相组成,陶瓷硬质相的比例提高有助于硬度和耐磨性的改善,但会造成韧性的降低;反之,当金属粘结相的比例提高时,会出现相反的力学性能变化规律。均匀结构硬质合金存在无法同时提高耐磨性和断裂韧性的局限性。表面改性在硬质合金表层空间尺度上实现微观组织的变化,进而对表面力学性能进行优化调控,最终提高硬质合金工具的使用寿命,满足工业应用不断发展的现状。目前主要通过化学表面改性和物理表面改性获得具有实际工程应用价值的非均匀结构硬质合金。近年来,通过渗碳、脱碳、渗氮或脱氮处理等化学表面改性制备梯度硬质合金或通过物理气相沉积和化学气相沉积等物理表面改性制备涂层硬质合金已成为非均匀结构硬质合金的研究热点。基于物理气相沉积或化学气相沉积涂层方法的多层复合涂层硬质合金已实现大规模商业化应用。

    本文针对目前传统均匀结构硬质合金耐磨性和断裂韧性难以同时提升的问题提出改进措施,介绍了不同表面改性处理得到非均匀结构硬质合金的制备机理与研究现状,并对今后的研究方向提出了展望。

    随着硬质合金制备技术的发展,非均匀结构硬质合金的制备方法不断丰富,其中表面改性是制备非均匀结构硬质合金的主要方法。化学表面改性是通过原子扩散、液体流动、化学反应等方法实现硬质合金表面物相及微观组织的改变,进而完成合金表面力学性能的定向改善[1920]。目前通过化学表面改性制备的常见梯度硬质合金如表1所示。

    表  1  基于化学表面改性的常见梯度硬质合金
    Table  1.  Graded cemented carbides based on the chemical surface modification
    化学表面
    改性方法
    材料体系特点梯度结构特征
    渗碳处理缺碳表层贫Co,芯部含η相
    正常碳的质量分数表层贫Co,芯部不含η相
    脱碳处理碳的质量分数偏高表层富Co
    渗氮处理含Ti、Ta、Nb等元素表层富含立方相
    脱氮处理含N元素表层富Co,无立方相
    下载: 导出CSV 
    | 显示表格

    渗碳或脱碳处理实现梯度结构是基于碳的扩散及碳的质量分数对硬质合金微观组织的影响。如WC–Co合金中只出现WC与Co两相,正常碳的质量分数应分布在富碳上限和缺碳下限之间[21],其中富碳上限为(6.13+0.058×Co质量分数)%,缺碳下限为(6.13‒0.079×Co质量分数)%。当合金中的碳质量分数高于富碳上限时,就会出现游离C,也就是石墨相;当合金中的碳质量分数低于缺碳下限时,就会出现η相[2122]。渗氮或脱氮是基于氮的扩散和氮、钛及碳之间的化学反应。氮的扩散实现硬质合金表面物相和微观组织的变化,进而促进梯度结构的形成[19,23]

    表层贫Co且芯部含η相梯度结构的形成机理分析如下[2427]:通过预烧结制备含η相硬质合金,然后进行渗碳液相烧结,渗入合金表面的C原子与表面η相发生反应,生成WC与Co。随着C原子由表及里的迁移,C原子由外向内与η相反应,这种反应导致η相降低甚至消失,Co相增加。C原子浓度在液相Co中呈现出外高内低的梯度,C原子浓度梯度驱动分解出来的W原子往外表层迁移,并且会与液相Co中的C原子反应生成WC。由W原子往外迁移而引起的体积缺陷也会驱动外表层中的液相Co由表及里迁移,因而导致过渡层的Co含量(质量分数)偏高,进而引起过渡层WC晶粒粗化。

    表层贫Co且芯部含η相梯度结构示意图如图1所示[27],可分为贫Co表层、富Co过渡层和含η相芯部。该梯度硬质合金的Co含量(质量分数)与维氏硬度分布如图2所示[27]。由图可知,表层Co质量分数低于名义Co质量分数,因而表层硬度高;过渡层的Co质量分数高于名义Co质量分数,因而硬度低,韧性高;芯部含有η相,其Co质量分数是合金的名义Co质量分数。

    图  1  表层贫Co且芯部含η相梯度结构示意图[27]:(a)贫Co表层;(b)富Co过渡层;(c)含η相芯部
    Figure  1.  Schematic of the graded structure[27]: (a) the cobalt-depleted surface; (b) the cobalt-rich transition layer; (c) the core with η phase
    图  2  Co质量分数与维氏硬度从表面到中心的分布[27]
    Figure  2.  Distribution of Co mass fraction and vickers hardness from the surface to the center[27]

    图3所示为WC–10Co硬质合金的W–Co–C相图[28]。关于表层贫Co且芯部不含η相梯度结构形成机理分析如下[2829]:当温度在1275~1325 ℃区间时,WC、固相Co和液相Co三相共存,在此温度范围内,当C质量分数在5.34%~5.65%范围内增加时,固相Co含量(质量分数)明显减少,而液相Co含量显著增加。因此,当低C含量且不含η相硬质合金在此温度下进行渗碳处理时,C原子逐渐渗入合金的表层,较高的C含量使合金表层首先出现液相Co,进而液相Co从合金表层向合金内部渗入,当保温一定时间,再冷却降温后,所有Co都会以固相Co的形式存在,最终出现表层贫Co的梯度硬质合金。该梯度结构特征如图4所示[28],由贫Co的表层和无η相的芯部组成。

    图  3  WC–10Co硬质合金的W–Co–C相图[28]
    Figure  3.  W–Co–C phase diagram of the WC–10Co cemented carbide[28]
    图  4  表层贫Co且芯部不含η相梯度结构示意图[28]:(a)贫Co表层;(b)无η相芯部
    Figure  4.  Schematic of the graded structure[28]: (a) the cobalt-depleted surface; (b) the core without η phase

    富Co表层梯度结构形成机理分析[3032]如下:从图3可以看出,液相Co含量(质量分数)会随着温度和C含量(质量分数)的变化而改变。脱碳处理即在低碳势的气氛下进行烧结,在1300 ℃以下进行脱碳,硬质合金表层的C含量将会率先降低,表层的Co优先从液相到固相发生转变,当液相Co开始凝固时,表层中溶解在液相Co中的C和W溶解度会下降,进而表层中的C和W向合金的内部迁移,最终形成表层富Co层,类似于一层Co覆盖在硬质合金的表层。脱碳处理得到的富Co表层梯度硬质合金如图5所示[28]。通过脱碳处理制备表层覆盖Co层的梯度硬质合金,对原始合金的C含量(质量分数)要求偏高,否则将会造成合金内部缺C。

    图  5  脱碳处理得到的富Co表层梯度硬质合金[30]:(a)表面形貌;(b)断面形貌
    Figure  5.  Graded cemented carbides with the cobalt-rich surface obtained by decarburization[30]: (a) surface morphology; (b) section morphology

    表层富含立方相梯度结构形成机理如图6所示[19,3334]:渗氮促使烧结气氛中的N原子扩散到合金表面,N原子与合金表面的C、Ti原子反应生成Ti(C,N)。该反应促使合金内部区域的Ti原子从里往外迁移。合金次表层的Ti原子向外迁移留下空位,此空位需要其他原子予以填充。金属Co原子在硬质合金材料体系中的扩散系数高,尤其是液相烧结,部分Co相为液相,流动性最好,所以Co原子会定向迁移填充由Ti原子迁移所造成的原子空位。此时,合金的次表层Co含量增加,次表层Co的富集促进次表层WC晶粒通过溶解–析出机制长大粗化,所以次表层富Co且WC晶粒粗大。最终形成表层富立方相、次表层富Co且WC晶粒粗大的梯度结构硬质合金。

    图  6  表层富含立方相梯度结构形成机理示意图[19,3334]
    Figure  6.  Formation mechanism schematic diagram of the graded structure with the surface layer in cubic-rich phase[19,3334]

    表层富Co且无立方相梯度结构形成机理如图7所示[3536]:在无氮或贫氮的烧结气氛下,含氮硬质合金在液相烧结过程中合金表面的氮化物发生分解,即合金表面N原子向烧结气氛中扩散,进而造成合金表层的N原子含量降低。此时,合金内部N原子的浓度大于合金表面N原子的浓度,合金内部的N原子向合金表面扩散。由于N与Ti原子之间存在强烈的亲和力,当合金内部的N原子通过粘结相向合金表面扩散时,合金表面的Ti原子也会通过粘结相向内部扩散,同时液相Co会从合金内部流向表层去填补由TiN分解出现的空位,进而导致合金表层的Co含量增加。直至合金表层TiN几乎全部发生分解,进而形成表层富Co且无立方相梯度结构硬质合金。

    图  7  表层富Co无立方相梯度结构形成机理示意图[3536]
    Figure  7.  Formation mechanism schematic diagram of the gradient structure in the surface layer with cobalt-rich and without cubic phase[3536]

    目前,部分基于化学表面改性方法的结构功能一体化梯度硬质合金材料已实现商业化且制备机理已基本清晰。但在化学表面改性实现梯度结构过程中,关于化学扩散与热扩散原理还缺乏深入研究,需要深入分析原子的迁移驱动力、动力学方程,建立原子在化学势和温度梯度作用下的迁移模型。

    物理表面改性是通过涂覆的方法在硬质合金表面制备单层或者多层复合涂层,从而赋予硬质合金特定的表面性能[37]。目前,涂层硬质合金主要通过物理气相沉积和化学气相沉积方法在材料表面涂覆高耐磨的难熔金属或非金属化合物[38]

    国内外研究人员对物理气相沉积和化学气相沉积涂层方法进行了广泛且深入的研究,结果表明两种方法分别具有不同优势[3841]。对于物理气相沉积,沉积温度低,涂层的沉积温度约200~500 ℃,一般对基体影响不大;对于化学气相沉积,由于沉积温度较高(850~1050 ℃),基体通常参与了薄膜成膜初期的化学反应。物理气相沉积涂层表面光滑,内部产生压应力,有助于抗裂纹扩展。对于化学气相沉积,涂层反应源的制备相对比较容易,涂层与基体结合强度高,涂层附着力强、均匀性好,适合用来给复杂形貌工件镀层。化学气相沉积涂层工业化成本低于物理气相沉积涂层。

    由于单一涂层难以满足当前机加工对涂层硬质合金刀具的力学性能要求,涂层成分趋于多元化,涂层结构趋于复合化,涂层微观组织趋于纳米化[38,42]。从目前应用需求分析,机加工对涂层结构的功能性要求越来越高[42],复合功能涂层结构已取得广泛应用。

    瑞典、美国等国家的著名刀具公司都开发有多层结构的涂层硬质合金刀具。如瑞典Sandvik Coromant公司的GC2015牌号刀具具有TiCN–TiN/Al2O3–TiN的三层结构复合涂层,TiCN底层与基体的结合强度高,TiN/Al2O3中间层既耐磨又能抑制裂纹的扩展,TiN表层具有较好的化学稳定性且易于观察刀具的磨损[43]。美国Kennametal Hertel公司的KC9315型刀片上共有三层涂层,底层是Al2O3,中间层是TiCN,表面层是TiN。这种多层复合涂层的性能较单层的TiC、TiN涂层及TiC/TiN双层涂层具有明显性能优势。多层复合涂层的功能分析如图8所示[42]

    图  8  多层复合涂层示意图[42]
    Figure  8.  Schematic diagram of the multilayer composite coatings[42]

    物理表面改性方法解决了硬质合金刀具硬度与强度之间的矛盾,已经在数控车床刀具领域取得广泛应用。涂层的性能取决于材料的微观组织结构与化学成分,除了研究涂层材料、涂层制备技术、涂层工艺之外,还需要重点研究涂层材料与硬质合金材料之间化学成分和热膨胀系数的匹配关系。

    硬质合金的主要研究方向已经从均匀结构向非均匀结构转变。对于化学表面改性梯度硬质合金,在研究当前梯度硬质合金微观结构及形成机理的基础上,需要完善其热力学、动力学数据,从微观机制上完整解释梯度结构的形成过程,实现准确调控梯度结构形成的重要参数,为功能梯度硬质合金的制备提供更充分的基础理论指导。对于物理表面改性涂层硬质合金,当前研究主要是在均匀结构硬质合金基体上进行涂层结构复合化设计,对硬质合金基体的梯度结构设计在改善涂层与基体结合强度方面具有潜在技术优势,因此,需要对硬质合金基体的非均匀结构设计开展深入研究。

  • 图  1   典型增材制造技术装置示意图:(a)激光选区熔化技术[51];(b)激光金属沉积技术[53]

    Figure  1.   Schematic diagram of the typical additive manufacturing technology devices: (a) laser metal deposition[51]; (b) selective laser melting[53]

    图  2   增材制造制备钛基复合材料与未加增强相材料硬度

    Figure  2.   Hardness of TMCs prepared by additive manufacturing and the unreinforced materials

    图  3   Ti合金及添加不同质量分数TiB2钛基复合材料的电子背散射衍射形貌和α片层尺寸分析[56]:(a)Ti‒6Al‒4V;(b)0.16%TiB2;(c)1.61%TiB2;(d)3.22%TiB2

    Figure  3.   Electron backscattered diffraction analysis and α lamella size of Ti alloys and TMCs with the different mass fraction of TiB2[56]: (a) Ti‒6Al‒4V; (b) 0.16%TiB2; (c) 1.61%TiB2; (d) 3.22%TiB2

    表  1   航空领域常用高温钛合金牌号及成分

    Table  1   Grades and components of the high-temperature titanium alloys

    国家钛合金牌号服役温度 / ℃成分组成(质量分数) / %
    美国Ti6242450Ti‒6Al‒2Sn‒4Zr‒2Mo
    Ti6242s520Ti‒6Al‒2Sn‒4Zr‒2Mo‒0.1Si
    Ti1100600Ti‒6Al‒2.75Sn‒4Zr‒0.4Mo‒0.45Si
    英国IMI829540Ti‒5Al‒3.5Sn‒3Zr‒0.27Mo‒0.3Si‒1.0Nb
    IMI834600Ti‒5.8Al‒4.0Sn‒3.5Zr‒0.5Mo‒0.35Si‒0.7Nb‒0.06C
    俄罗斯BT18Y550~600Ti‒6.8Al‒2.5Sn‒4Zr‒0.7Mo‒0.2Si‒1Nb
    BT36600Ti‒6.3Al‒2.2Sn‒3.5Zr‒0.7Mo‒0.15Si‒5W
    中国Ti60600Ti‒5.8Al‒4.8Sn‒2Zr‒1Mo‒0.35Si‒0.85Nd
    Ti600600Ti‒6Al‒2.8Sn‒4Zr‒0.5Mo‒0.4Si‒0.1Y
    Ti65650Ti‒5.9Al‒4.0Sn‒3.5Zr‒0.3Mo‒0.4Si‒0.3Nb‒2.0Ta‒1.0W‒0.05C
    下载: 导出CSV
  • [1]

    Liu Z Y, He B, Lyu T Y, et al. A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond Ti‒6Al‒4V. JOM, 2021, 73(6): 1804 DOI: 10.1007/s11837-021-04670-6

    [2]

    Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des, 2021, 209: 110008 DOI: 10.1016/j.matdes.2021.110008

    [3] 黄张洪, 曲恒磊, 邓超, 等. 航空用钛及钛合金的发展及应用. 材料导报, 2011, 25(1): 102

    Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys. Mater Rev, 2011, 25(1): 102

    [4] 刘莹莹, 陈子勇, 金头男, 等. 600 ℃高温钛合金发展现状与展望. 材料导报, 2018, 32(6): 1863 DOI: 10.11896/j.issn.1005-023X.2018.11.013

    Liu Y Y, Chen Z Y, Jin T N, et al. Present situation and prospect of 600 ℃ high-temperature titanium alloys. Mater Rev, 2018, 32(6): 1863 DOI: 10.11896/j.issn.1005-023X.2018.11.013

    [5]

    Li S, Deng T S, Zhang Y H, et al. Review on the creep resistance of high-temperature titanium alloy. Trans Indian Inst Met, 2021, 74: 215 DOI: 10.1007/s12666-020-02137-x

    [6] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展. 材料工程, 2016, 44(8): 1 DOI: 10.11868/j.issn.1001-4381.2016.08.001

    Cai J M, Mi G B, Gao F, et al. Research and development of some advanced high temperature titanium alloys for aero-engine. J Mater Eng, 2016, 44(8): 1 DOI: 10.11868/j.issn.1001-4381.2016.08.001

    [7]

    Khataee A, Flower H M, West D R F. New titanium‒aluminum‒X alloys for aerospace applications. J Mater Eng, 1988, 10(1): 37 DOI: 10.1007/BF02834112

    [8] 王虎, 赵琳, 彭云, 等. 增材制造TiAl基合金的研究进展. 粉末冶金技术, 2022, 40(2): 110 DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009

    Wang H, Zhao L, Peng Y, et al. Research progress of TiAl-based alloys fabricated by additive manufacturing. Powder Metall Technol, 2022, 40(2): 110 DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009

    [9] 曹京霞, 黄旭, 弭光宝, 等. Ti‒V‒Cr系阻燃钛合金应用研究进展. 航空材料学报, 2014, 34(4): 92 DOI: 10.11868/j.issn.1005-5053.2014.4.009

    Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti‒V‒Cr burn resistant titanium alloys. J Aeron Mater, 2014, 34(4): 92 DOI: 10.11868/j.issn.1005-5053.2014.4.009

    [10]

    Falodun O E, Obadele B A, Oke S R, et al. Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol, 2019, 102(5): 1689

    [11]

    Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix manocomposites: a review. J Nanomater, 2012, 2012: 983470

    [12]

    Patil C S, Ansari M I, Selvan R, et al. Influence of micro B4C ceramic particles addition on mechanical and wear behavior of aerospace grade Al‒Li alloy composites. Sādhanā, 2021, 46(1): 11

    [13] 邝玮, 王敏敏, 李九霄, 等. 原位自生(TiB+La2O3)/TC4钛基复合材料的显微组织和力学性能. 机械工程材料, 2015, 39(2): 67

    Kuang W, Wang M M, Li J X, et al. Microstructure and mechanical properties of In-situ synthesized (TiB+La2O3)/TC4 titanium matrix composite. Mater Mech Eng, 2015, 39(2): 67

    [14]

    Dadkhah M, Mosallanejad M H, Iuliano L, et al. A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: potential, challenges, and feasible solutions. Acta Metall Sinica, 2021, 34(9): 1173 DOI: 10.1007/s40195-021-01249-7

    [15] 戚继球. 熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013

    Qi J Q. Microstructure and High-Temperature Deformation Behavior of TiC Reinforced High-Temperature Titanium Alloy Matrix Composites Produced by Melting-Casting Process [Dissertation]. Harbin: Harbin Institute of Technology, 2013

    [16]

    Yamamoto T, Otsuki A, Ishihara K, et al. Synthesis of near net shape high density TiB/Ti composite. Mater Sci Eng A, 1997, A239-240: 647

    [17]

    Liu B, Liu Y, He X Y, et al. Preparation and mechanical properties of particulate-reinforced powder metallurgy titanium matrix composites. Metall Mater Trans A, 2007, 38(11): 2825 DOI: 10.1007/s11661-007-9329-9

    [18]

    Durai Murugan P, Vijayananth S, Natarajan M P, et al. A current state of metal additive manufacturing methods: A review. Mater Today, 2022, 59: 1277

    [19]

    Shakil S I, Smith N R, Yoder S P, et al. Post fabrication thermomechanical processing of additive manufactured metals: A review. J Manuf Process, 2022, 73: 757 DOI: 10.1016/j.jmapro.2021.11.047

    [20]

    Ahn D G. Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. Int J Precis Eng Manuf, 2016, 3(4): 381

    [21]

    Pototzky P, Maier H J, Christ H J. Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834. Metall Mater Trans A, 1998, 29(12): 2995 DOI: 10.1007/s11661-998-0207-x

    [22] 王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景. 航空材料学报, 2014, 34(4): 1 DOI: 10.11868/j.issn.1005-5053.2014.4.001

    Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective. J Aeron Mater, 2014, 34(4): 1 DOI: 10.11868/j.issn.1005-5053.2014.4.001

    [23] 王瑞琴, 葛鹏, 侯鹏, 等. 固溶和时效温度对IMI834钛合金板材组织和性能的影响. 金属热处理, 2021, 46(3): 96 DOI: 10.13251/j.issn.0254-6051.2021.03.019

    Wang R Q, Ge P, Hou P, et al. Effects of solution treatment and aging temperature on microstructure and mechanical properties of IMI834 titanium alloy plate. Heat Treat Met, 2021, 46(3): 96 DOI: 10.13251/j.issn.0254-6051.2021.03.019

    [24] 史蒲英, 张永强, 孙峰, 等. 固溶时效温度对IMI834钛合金组织和性能的影响. 特种铸造及有色合金, 2017, 37(9): 936 DOI: 10.15980/j.tzzz.2017.09.003

    Shi P Y, Zhang Y Q, Sun F, et al. Influences of solution and aging temperature on microstructure and mechanical properties of the IM1834 alloy. Spec Cast Nonferrous Alloys, 2017, 37(9): 936 DOI: 10.15980/j.tzzz.2017.09.003

    [25] 车晋达, 姜贝贝, 王清, 等. 微量元素添加对Ti1100合金的高温抗氧化及耐蚀性能影响. 稀有金属材料与工程, 2018, 47(5): 1471

    Che J D, Jiang B B, Wang Q, et al. Effects of minor additions of elements into Ti1100 on elevated temperature oxidation- and corrosion-resistance. Rare Met Mater Eng, 2018, 47(5): 1471

    [26] 付艳艳, 宋月清, 惠松骁, 等. 航空用钛合金的研究与应用进展. 稀有金属, 2006, 30(6): 850 DOI: 10.3969/j.issn.0258-7076.2006.06.028

    Fu Y Y, Song Y Q, Hui S X, et al. Research and application of typical aerospace titanium alloys. Chin J Rare Met, 2006, 30(6): 850 DOI: 10.3969/j.issn.0258-7076.2006.06.028

    [27] 何春艳, 张利军. 国内外高温钛合金的发展与应用. 世界有色金属, 2016(1): 21

    He C Y, Zhang L J. The development and application of high temperature titanium alloy at domestic and abroad. World Nonferrous Met, 2016(1): 21

    [28] 付彬国. 合金元素对铸造Ti-1100合金组织及性能影响[学位论文]. 哈尔滨: 哈尔滨工业大学, 2015

    Fu B G. Effects of Alloying Elements on Microstructures and Properties of Cast Ti-1100 Alloys [Dissertation]. Harbin: Harbin Institute of Technology, 2015

    [29] 郭杰, 岳颗, 胡钊华, 等. 航空航天用Ti60高温钛合金铸锭制备工艺. 钢铁钒钛, 2021, 42(6): 138 DOI: 10.7513/j.issn.1004-7638.2021.06.019

    Guo J, Yue K, Hu Z H, et al. Preparation of Ti60 high temperature titanium alloy ingot for aerospace. Iron Steel Vanadium Titanium, 2021, 42(6): 138 DOI: 10.7513/j.issn.1004-7638.2021.06.019

    [30] 汤海芳, 赵永庆, 洪权, 等. 稀土元素对高温钛合金组织和性能的影响. 钛工业进展, 2010, 27(1): 16 DOI: 10.3969/j.issn.1009-9964.2010.01.003

    Tang H F, Zhao Y Q, Hong Q, et al. Effects of rare earth elements on the structure and properties of high-temperature titanium alloy. Titanium Ind Prog, 2010, 27(1): 16 DOI: 10.3969/j.issn.1009-9964.2010.01.003

    [31] 赵子博, 王清江, 刘建荣, 等. Ti60合金棒材中的织构及其对拉伸性能的影响. 金属学报, 2015, 51(5): 561 DOI: 10.11900/0412.1961.2014.00451

    Zhao Z B, Wang Q J, Liu J R, et al. Texture of Ti60 alloy precision bars and its effect of tensile properties. Acta Met Sin, 2015, 51(5): 561 DOI: 10.11900/0412.1961.2014.00451

    [32] 赵亮, 刘建荣, 王清江, 等. 析出相对Ti60钛合金蠕变和持久性能的影响. 材料研究学报, 2009, 23(1): 1 DOI: 10.3321/j.issn:1005-3093.2009.01.001

    Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy. Chin J Mater Res, 2009, 23(1): 1 DOI: 10.3321/j.issn:1005-3093.2009.01.001

    [33] 赵会宇, 张媚, 于佳石, 等. 石墨烯/Ti60复合材料组织与力学性能研究. 钛工业进展, 2022, 39(2): 29 DOI: 10.11782/j.issn.1009-9964.2022.2.tgyjz202202006

    Zhao H Y, Zhang M, Yu J S, et al. Research on microstructure and mechanical properties of graphene/Ti60 composites. Titanium Ind Prog, 2022, 39(2): 29 DOI: 10.11782/j.issn.1009-9964.2022.2.tgyjz202202006

    [34] 谢洪志, 刘广鑫, 彭皓云, 等. Ti65钛合金板材高温力学性能及影响因素. 兵器材料科学与工程, 2022, 45(2): 26 DOI: 10.14024/j.cnki.1004-244x.20211129.001

    Xie H Z, Liu G X, Peng H Y, et al. High temperature mechanical properties and influencing factors of Ti65 titanium alloy sheet. Ordn Mater Sci Eng, 2022, 45(2): 26 DOI: 10.14024/j.cnki.1004-244x.20211129.001

    [35]

    Zhao D, Fan J K, Zhang Z X, et al. Microstructure and texture variations in high temperature titanium alloy Ti65 sheets with different rolling modes and heat treatments. Materials, 2020, 13(11): 2466 DOI: 10.3390/ma13112466

    [36] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展. 航空材料学报, 2020, 40(3): 77 DOI: 10.11868/j.issn.1005-5053.2020.000061

    Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field. J Aeron Mater, 2020, 40(3): 77 DOI: 10.11868/j.issn.1005-5053.2020.000061

    [37]

    Nyanor P, El-Kady O, Yehia H M, et al. Effect of bimodal-sized hybrid TiC-CNT reinforcement on the mechanical properties and coefficient of thermal expansion of aluminium matrix composites. Met Mater Int, 2021, 27(4): 753 DOI: 10.1007/s12540-020-00802-w

    [38]

    Hu Y B, Cong W L, Wang X L, et al. Laser deposition-additive manufacturing of TiB‒Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Composites Part B, 2018, 133: 91 DOI: 10.1016/j.compositesb.2017.09.019

    [39] 郑博文, 袁晓光, 董福宇, 等. La2O3含量对(TiC+TiB)/IMI834复合材料组织及耐磨性的影响. 铸造, 2021, 70(8): 933 DOI: 10.3969/j.issn.1001-4977.2021.08.006

    Zheng B W, Yuan X G, Dong F Y, et al. Effect of La2O3 content on microstructures and wear resistance of IM834 matrix composites. Foundry, 2021, 70(8): 933 DOI: 10.3969/j.issn.1001-4977.2021.08.006

    [40]

    Qin Y X, Zhang D, Lu W J, et al. Oxidation behavior of in situ-synthesized (TiB+TiC)/Ti6242 composites. Oxid Met, 2006, 66(5): 253

    [41] 神祥博. SPS制备TiB增强Ti基复合材料的组织结构和力学性能研究[学位论文]. 北京: 北京理工大学, 2014

    Shen X B. Microstructure and Mechanical Properties of in situ TiB Reinforced Titanium Matrix Compositre Prepared by SPS [Dissertation]. Beijing: Beijing Institute of Technology, 2014

    [42]

    Attar H, Bönisch M, Calin M, et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J Mater Res, 2014, 29(17): 1941 DOI: 10.1557/jmr.2014.122

    [43]

    Li Y Y, Zhu F W, Qiao Z L. Study on mechanical alloying of TiB2 particulate reinforced titanium matrix composites. Appl Mech Mater, 2018, 875: 41 DOI: 10.4028/www.scientific.net/AMM.875.41

    [44] 张亮亮, 周阳, 刘世锋, 等. 模具钢增材制造及其性能的研究进展. 中国冶金, 2022, 32(3): 1 DOI: 10.13228/j.boyuan.issn1006-9356.20210661

    Zhang L L, Zhou Y, Liu S F, et al. Research progress in additive manufacturing and properties of die steel. China Metall, 2022, 32(3): 1 DOI: 10.13228/j.boyuan.issn1006-9356.20210661

    [45]

    Radhakrishnan M, Hassan M M, Long B E, et al. Microstructures and properties of Ti/TiC composites fabricated by laser-directed energy deposition. Addit Manuf, 2021, 46: 102198

    [46]

    Attar H, Löber L, Funk A, et al. Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Mater Sci Eng A, 2015, 625: 350 DOI: 10.1016/j.msea.2014.12.036

    [47]

    Attar H, Prashanth K G, Zhang L C, et al. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol, 2015, 31(10): 1001 DOI: 10.1016/j.jmst.2015.08.007

    [48]

    Li H L, Jia D C, Yang Z H, et al. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Ti–6Al–4V and TiB/Ti–6Al–4V composite: a comparative study. Mater Sci Eng A, 2021, 801: 140415 DOI: 10.1016/j.msea.2020.140415

    [49]

    Cai C, Radoslaw C, Zhang J L, et al. In-situ preparation and formation of TiB/Ti‒6Al‒4V nanocomposite via laser additive manufacturing: microstructure evolution and tribological behavior. Powder Technol, 2019, 342: 73 DOI: 10.1016/j.powtec.2018.09.088

    [50]

    Sato Y, Tsukamoto M, Masuno S, et al. Investigation of the microstructure and surface morphology of a Ti6Al4V plate fabricated by vacuum selective laser melting. Appl Phys A, 2016, 122: 439 DOI: 10.1007/s00339-016-9996-8

    [51]

    Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf, 2006, 46(12): 1459

    [52]

    Yan L, Li W, Chen X Y, et al. Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM, 2017, 69(3): 586 DOI: 10.1007/s11837-016-2211-8

    [53]

    Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54: 98 DOI: 10.1016/j.optlastec.2013.05.011

    [54]

    Wang L, Cheng J, Qiao Z H, et al. Tribological behaviors of in situ TiB2 ceramic reinforced TiAl-based composites under sea water environment. Ceram Int, 2017, 43(5): 4314 DOI: 10.1016/j.ceramint.2016.12.075

    [55] 丁红燕, 周长培, 章跃, 等. Ti/TiB2多层膜在Hank's模拟体液中耐蚀性研究. 真空科学与技术学报, 2014, 34(6): 611

    Ding H Y, Zhou C P, Zhang Y, et al. Corrosion resistance of Ti/TiB2 multilayers in Hank's solution. Chin J Vacuum Sci Technol, 2014, 34(6): 611

    [56] 钦兰云, 门继华, 赵朔, 等. TiB2含量对选区激光熔化TiB/Ti‒6Al‒4V复合材料组织及力学性能的影响. 中国激光, 2021, 48(6): 0602102 DOI: 10.3788/CJL202148.0602102

    Qin L Y, Men J H, Zhao S, et al. Effect of TiB content on microstructure and mechanical properties of TiB/Ti‒6Al‒4V composites formed by selective laser melting. Chin J Lasers, 2021, 48(6): 0602102 DOI: 10.3788/CJL202148.0602102

    [57]

    Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des, 2016, 105: 160 DOI: 10.1016/j.matdes.2016.05.070

    [58]

    Li H L, Yang Z H, Cai D L, et al. Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions. Mater Des, 2020, 185: 108245 DOI: 10.1016/j.matdes.2019.108245

    [59]

    Fang M H, Han Y F, Shi Z S, et al. Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Composites Part B, 2021, 211: 108683 DOI: 10.1016/j.compositesb.2021.108683

    [60]

    Xiao L H, Huang S Q, Wang Y, et al. Preparation and characterization of the anti-high temperature oxidation borosilicate glass coating on TC4 titanium alloy. J Mater Eng Perform, 2022, 31(1): 534 DOI: 10.1007/s11665-021-06189-y

    [61] 丁超. 粉末冶金Ti600合金组织和性能的研究[学位论文]. 辽宁: 沈阳工业大学, 2019

    Ding C. Microstructures and Properties of Powder Metallurgy Ti600 Alloy [Dissertation]. Shenyang: Shenyang University of Technology, 2019

    [62]

    Bermingham M J, Mcdonald S D, Dargusch M S. Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti‒6Al‒4V produced by additive manufacturing. Mater Sci Eng A, 2018, 719: 1 DOI: 10.1016/j.msea.2018.02.012

    [63]

    Feng Y Q, Feng K, Yao C W, et al. Microstructure and properties of in-situ synthesized (Ti3Al + TiB)/Ti composites by laser cladding. Mater Des, 2018, 157: 258 DOI: 10.1016/j.matdes.2018.07.045

    [64]

    Feng Y Q, Feng K, Yao C W, et al. Effect of LaB6 addition on the microstructure and properties of (Ti3Al + TiB)/Ti composites by laser cladding. Mater Des, 2019, 181: 107959 DOI: 10.1016/j.matdes.2019.107959

    [65]

    Nartu M S K K Y, Pole M, Mantri S A, et al. Process induced multi-layered titanium-boron carbide composites via additive manufacturing. Add Manuf, 2021, 46: 102156

    [66]

    Zhang Y Z, Wei Z M, Shi L K, et al. Characterization of laser powder deposited Ti–TiC composites and functional gradient materials. J Mater Process Technol, 2008, 206(1): 438

  • 期刊类型引用(2)

    1. 唐彦渊,羊求民,徐国钻,王红云,钟志强. 微量Y_2O_3对WC-6Co非均匀结构硬质合金微观结构及性能的影响. 粉末冶金技术. 2024(02): 184-191 . 本站查看
    2. 周晓刚,纪飞飞. 激光喷丸作用下TC4双相钛合金HCP结构位错组态及性能研究. 应用激光. 2022(10): 99-105 . 百度学术

    其他类型引用(0)

图(3)  /  表(1)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  2155
  • PDF下载量:  287
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-10
  • 录用日期:  2022-05-10
  • 网络出版日期:  2022-08-06
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回