Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites
-
摘要:
高温钛合金及钛基复合材料因具有比强度高、比刚度高、耐腐蚀、耐高温等优异性能,近几年来受到了广泛的关注。钛基复合材料的力学性能往往与增强相组织有关,增材制造技术的快速凝固可以使颗粒增强钛基复合材料中晶粒细化,力学性能得到提升。本文综述了高温钛合金及钛基复合材料的研究进展,分析了增强相组织对材料力学性能的影响,总结了增材制造技术制备钛基梯度功能材料的应用。通过增材制造技术制备钛基复合材料不仅可以提高复合材料的硬度和强度,还可以提高复合材料的延展性,采用增材制造技术制备高性能钛基复合材料将会成为未来的发展趋势。
Abstract:High temperature titanium alloys and titanium matrix composites (TMCs) have attracted the extensive attention in recent years due to the excellent properties, such as high specific strength, high specific stiffness, high corrosion resistance, and high temperature resistance. The mechanical properties of the titanium matrix composites are often related to the reinforcing phase microstructures. The rapid solidification of additive manufacturing technology can refine particles and improve the mechanical properties of the particle-reinforced titanium matrix composites. The research progress of high temperature titanium alloys and titanium matrix composites was reviewed in this paper. The influence of the reinforcing phase on the mechanical properties of the titanium alloys and titanium matrix composites was analyzed, and the application of additive manufacturing technology used for the titanium-based gradient functional materials was summarized. The additive manufacturing technology can not only improve the hardness and strength of the particle-reinforced titanium matrix composites, but also increase the ductility of the composites, which will become the future development trend.
-
阴极是电真空器件的电子源,是器件的核心部件。热阴极是电真空器件中应用最广的一类阴极,它靠热能使阴极内的电子逸出表面,产生电子发射。经过百余年的发展,热阴极不论是在工作环境、耐受性还是在发射密度方面都取得长足进步,可满足器件1~100 A·cm-2发射电流密度的需求[1]。将阴极装配成间热式的组件结构应用更广泛,阴极发射体自身不通电加热,有利于获取高质量的电子注;热子一般置于发射表面之后,为阴极供热;两者功能不同,但在结构上需紧密相连,组成一个整体,即阴极热子组件,以保证高效传热,阴极稳定工作。多数氧化物阴极和所有扩散式阴极均制备成为阴极热子组件,特别是扩散阴极中的新型钪系阴极,其发射能力高于100 A·cm-2[2],具有广阔的发展应用前景。
三维快速成型打印简称3D打印,又被称为增材制造技术,可将需要产品的三维模型文件通过3D打印设备进行分层离散处理,再经激光照射等方式将材料逐层叠加、精确堆积,迅速完成产品的成型[3-4]。常规的阴极热子组件制备流程是每个零件分别通过车削加工达到所需形状尺寸,随后进行钎焊组合,而通过3D打印的方式可以实现阴极热子组件整体的连续一体化制造,改变原有装配连接工艺。增材制造方式可快速高效地完成复杂结构的成型,特别适用于制造热子,可省去配套模具的使用和多次进炉烧结,降低制造难度。
国内外3D打印领域中已有近20种不同的工艺体系,其中应用最典型、最成熟的包括立体光刻、叠层实体制造、熔融沉积成型、三维打印与胶粘、选择性激光烧结、选择性激光熔融等。虽然基本原理一致,但由于所用打印材料存在差异,各自特点和具体应用场合也有所不同。选择性激光熔化技术(selective laser melting, SLM)是一种新型“净成形”增材制造技术,主要成形过程包括对零件三维模型切片分层,计算截面轮廓数据并生成激光扫描路径,设备聚焦激光束对预置铺展的粉末进行选取熔化,冷却固化并逐层堆叠成所需零件[5-6]。选择性激光熔化成型件的力学性能好,与相同材料的铸造件相当,相对密度接近100%[7-8]。阴极热子组件的材料主要为难熔金属钨粉,近年来用于钨材料的3D打印技术取得快速发展,已能打印相对密度为97%的钨块体[9-10]。本文采用选择性激光熔化技术一体化3D打印了阴极热子组件模型,并对组件样品的热子加热和阴极发射性能进行了研究和讨论,希望通过完善模型设计和后处理工艺,达到可观的电子发射。
1. 3D打印阴极热子组件模型设计
利用3D打印工艺中的选择性激光熔化技术制备阴极热子组件,其基本原理为将三维模型输入系统,逐层打印、精密堆积,同时还应满足一体化的制备流程,即自下而上将阴极和热子整体连续打印出来。研究人员要重新设计阴极热子组件模型,并根据后续工艺处理的实施情况进行迭代优化。
1.1 材料的单一性
常规的阴极热子组件为套筒结构,不适用于3D打印的一体化成型流程,必须按各个组成部分的功能抽象成层次结构。为避免不同材料在打印过程中的界面连接问题,最好采用同一种粉末材料进行打印。钨粉是制备阴极钨海绵的原料,此外热子的丝料也主要采用钨或钨合金,因此考虑使用钨粉作为原料粉末,直接进行阴极热子组件的3D打印成型。
1.2 支撑结构的合理性
3D打印的成型方式是自下而上的逐层精密堆积[11],具有方向性,在成型的过程中,必须考虑自身结构的支撑,即在上方连接结构未打印完成之前,下方分离的结构要有独立的支撑,否则无法成型。对支撑结构必须进行合理设计,使其能起到支撑作用的同时,必须在后期易于去除;在设计之初,须考虑所使用的去除手段不会对组件造成破坏。
1.3 热子的电性能
为达到对阴极热子组件的性能要求,使用3D打印的成型方式必须使热子具备足够大的电阻,即进行合理的热子结构设计。在保证自身结构支撑的同时,充分利用空间,尽量延长热子结构的总长。故将热子设计为竖直圆柱阵列,并将每个圆柱首尾顺次连接,形成串联。
按以上设计原则进行多轮优化,适用于3D打印的阴极热子组件模型如图 1所示。如图所示,组件自下而上依次为阴极钨饼、致密层、支撑体、热子和热子引腿,这种模型能够与3D打印逐层精确堆积的成型过程相匹配,其中阴极发射体的孔隙度可通过密度进行调节,即控制激光的功率和扫描速率[12]。
此外,3D打印适合成型复杂形状,该技术特性为热子引腿的构造带来更多想象空间,可以不再拘泥于简单圆柱形状。如图 2所示,异形台阶结构热子引腿的横截面积大于发热丝,能够减小电阻,通电加热时,可降低引腿发热,以提高热子加热阴极的效率;异形结构引腿的自身重量减小,可减轻热子的承重压力;异形结构引腿可增加与热子电位引出带的接触面积,方便可靠连接。
2. 一体化打印阴极热子组件
将设计好的模型输入选择性激光熔化系统中,经过软件切片分析,并进行逐层打印。阴极热子组件一体化成型过程如图 3所示。在实际成型过程中,钨饼与致密层紧密相连,激光照射粉末,形成具有一定深度的熔池,构成密度渐变的过渡层。为精确检测钨饼密度,使用相同的打印参数,打印形状规则、易于测量的标定样块。如图 4所示,样块尺寸为11 mm×8.19 mm×6.03 mm,重量为7.8 g,计算后可得其相对密度为74.8%,即孔隙度约为25%。确定了钨饼的打印参数后,进行阴极热子组件的一体化打印。
共打印完成两组组件样品:(1)直径为5 mm样品,热丝丝径分别为0.25 mm、0.3 mm和0.4 mm; (2)直径为3 mm样品,丝径为0.25 mm的样品,其宏观形貌如图 5所示。在光学显微镜下(如图 6所示),打印出来的热丝表面粗糙,有粘连的颗粒,这源自选择性激光熔化技术具有的“球化效应”和“粉末粘附”加工特性[13-14]。丝越细,间距越小,虽然可以增大热子的电阻,但也增大了颗粒搭接造成短路的风险;此外,较细的热丝力学强度低,易发生整体变形,为后期去掉支撑结构带来更大的困难。综上所述,直径5 mm的组件应使用0.4 mm的丝径,直径3 mm的组件由于尺寸限制,热丝直径不应超过0.25 mm。
3. 后处理工艺
组件打印完成后,需要进行后续处理,从而使阴极热子组件具备稳定可靠的热发射性能。后处理工艺主要包括去除多余支撑结构、热丝绝缘防护和阴极发射活性物质浸渍等。
3.1 去除多余支撑结构
支撑结构是圆柱阵列,去除后才能断开热丝与阴极的直接相连,使热丝串联并获得高于导线的热子电阻。采用高能激光照射的方式能够将支撑柱熔断,实现稳定可靠的去除操作。去除后的阴极热子组件如图 7所示。去除操作可在光学放大系统下进行精准控制,有效避免伤害中心支柱。中心支柱固定了热子与阴极的相对位置,构成组件,若受损将导致热子与阴极分离;此外要防止热丝受损,由于热丝整体串联,因此只要有一处断点就会产生成片地脱落。
去除支撑结构后,室温下热子电阻达到0.4Ω。为了直观地检测热子加热性能,在制备绝缘填料之前将样品固定安装在玻璃测试管内,抽真空,同时逐步增加热子电压。在21.6 W加热功率下,选择性激光熔化技术制备的热子温度能够达到1250℃,如见图 8所示。
3.2 热丝绝缘防护与浸盐
通电加热实验验证了去除支撑结构后,打印成型的热丝通过串联的方式能够使热子具备足够的电阻并正常发热。为保证热丝长时间可靠工作,需要进行绝缘防护,并降低热子与阴极温差。常用的处理方式是灌注氧化铝填料并烧结致密。将去除了支撑结构的组件放入模具中,灌注流动性良好的氧化铝粉末浆料,填充热子发热丝之间以及热子和阴极钨饼之间的空隙,干燥固化后从模具内脱出,最后在氢气气氛中高温烧结。图 9所示为直径5 mm和3 mm的样品绝缘防护处理,其中前者的热丝热子引腿打印成了台阶形状。
为使阴极具备良好的发射能力,需要在阴极钨饼内浸渍发射盐,浸盐温度低于氧化铝绝缘填料的烧结温度,以减少损伤。清除多余发射盐后,3D打印阴极热子组件的后处理全部完成,随后对该新型阴极热子组件进行排气测试。
4. 阴极热子性能测试
首先对新型阴极热子组件的加热性能进行测试,阴极表面达到工作温度是热发射的前提。如图 10所示,将样品装架于玻璃管壳内,通电加热。通过提高电压逐步增加热子加热功率,表 1所示为在不同加热功率下,热子和阴极发射表面的温度。由表可知,随着加热功率的提高,阴极与热子的温差逐渐提高,保持在150~200℃的范围。常规阴极和钼筒组成的组件温差为100℃,这主要是由于新型阴极热子组件样品没有常规阴极钼筒组件的侧壁辅助传热。
表 1 加热功率及阴极热子温度Table 1. Heating powers and the corresponding temperatures of cathode and heater热子电/V 热子加热功率/W 热子温度/℃ 阴极发射表面温度/℃ 阴极热子温差/℃ 6 12.30 983 830 153 7 16.03 1050 883 167 8 19.28 1129 941 188 9 22.95 1176 987 189 10 26.90 1233 1035 198 11 30.25 1272 1071 201 选用ϕ3 mm的组件样品进行电子发射测试,图 11显示了阴极发射表面宏观形貌。图中可观察到多孔结构,孔径明显大于传统车削加工表面,这种孔分布于整个表面,排列无明显规律。图 12为不同制备工艺得到的阴极表面显微形貌。如图所示,不同于常规粉末冶金工艺制备的阴极表面,选择性激光熔化工艺制备的阴极表面没有明显的粉末烧结多孔结构,且表面存在微裂纹,发射盐填充在这些裂缝之中。进一步能谱分析发现,新型阴极热子组件的阴极表面成分与浸渍铝酸盐阴极一致,如表 2。
表 2 新型阴极热子组件的阴极表面能谱分析Table 2. Energy spectrum analysis of the new type cathode-heater assembly surface元素 质量分数/% 原子数分数/% O 13.90 59.73 Al 3.36 8.55 Ba 6.19 3.10 W 76.55 28.62 制备常规阴极钨基体时,可通过高温活化烧结形成烧结颈和固相迁移来增加相对密度,形成多孔体。在使用选择性激光熔化工艺打印阴极钨饼的过程中,高能激光将钨粉熔化,冷却凝固后叠加生长成钨饼,微观上已经不存在原有粉末颗粒的形貌特征。激光光斑直径受选择性激光熔化设备限定,为百微米量级,远小于阴极直径,打印时光斑照射钨粉,形成局部熔池,按一定路径移动后,完成整个单层的固化成型。非平衡的凝固过程和不同步的微观组织结构变化能够产生局部应力,形成微裂纹等缺陷[15-16]。调节激光功率和光斑移动速率能够影响熔池范围,控制微裂纹的分布和尺寸。因此,与常规阴极不同,由选择性激光熔化打印制备的阴极基体相对密度较低,可通过微裂纹的产生来控制活性物质浸渍,其宏观检测依然使用密度表征孔度。
图 13为水冷阳极二极管外观形貌,利用水冷阳极二极管检测阴极热子组件发射电流密度。图 14显示了阴极温度为1100℃时,样品的拐点发射电流密度达到7.94 A∙cm-2,取得了可观的电子发射。
5. 结论
(1)根据3D打印技术的特殊成型方式和工艺特点,构建了合理可行的新型阴极热子组件三维模型,并使用选择性激光熔化设备实现了组件的一体化打印成型。
(2)对新型组件进行多余支撑结构去除、热子绝缘防护和浸盐的后处理,阴极热子组件样品在1100℃下达到约8 A∙cm‒2的拐点发射电流密度。
(3)选择性激光熔化技术通过微裂纹的产生形成非致密的阴极基体,浸渍发射盐后能够获取可观的电子发射,为阴极热子组件研制提供了新的设计方案,即将3D打印技术应用于组件的制备。利用增材制造成型复杂形状的零件,为新结构研发提供了新技术和新思路。
-
图 3 Ti合金及添加不同质量分数TiB2钛基复合材料的电子背散射衍射形貌和α片层尺寸分析[56]:(a)Ti‒6Al‒4V;(b)0.16%TiB2;(c)1.61%TiB2;(d)3.22%TiB2
Figure 3. Electron backscattered diffraction analysis and α lamella size of Ti alloys and TMCs with the different mass fraction of TiB2[56]: (a) Ti‒6Al‒4V; (b) 0.16%TiB2; (c) 1.61%TiB2; (d) 3.22%TiB2
表 1 航空领域常用高温钛合金牌号及成分
Table 1 Grades and components of the high-temperature titanium alloys
国家 钛合金牌号 服役温度 / ℃ 成分组成(质量分数) / % 美国 Ti6242 450 Ti‒6Al‒2Sn‒4Zr‒2Mo Ti6242s 520 Ti‒6Al‒2Sn‒4Zr‒2Mo‒0.1Si Ti1100 600 Ti‒6Al‒2.75Sn‒4Zr‒0.4Mo‒0.45Si 英国 IMI829 540 Ti‒5Al‒3.5Sn‒3Zr‒0.27Mo‒0.3Si‒1.0Nb IMI834 600 Ti‒5.8Al‒4.0Sn‒3.5Zr‒0.5Mo‒0.35Si‒0.7Nb‒0.06C 俄罗斯 BT18Y 550~600 Ti‒6.8Al‒2.5Sn‒4Zr‒0.7Mo‒0.2Si‒1Nb BT36 600 Ti‒6.3Al‒2.2Sn‒3.5Zr‒0.7Mo‒0.15Si‒5W 中国 Ti60 600 Ti‒5.8Al‒4.8Sn‒2Zr‒1Mo‒0.35Si‒0.85Nd Ti600 600 Ti‒6Al‒2.8Sn‒4Zr‒0.5Mo‒0.4Si‒0.1Y Ti65 650 Ti‒5.9Al‒4.0Sn‒3.5Zr‒0.3Mo‒0.4Si‒0.3Nb‒2.0Ta‒1.0W‒0.05C -
[1] Liu Z Y, He B, Lyu T Y, et al. A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond Ti‒6Al‒4V. JOM, 2021, 73(6): 1804 DOI: 10.1007/s11837-021-04670-6
[2] Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des, 2021, 209: 110008 DOI: 10.1016/j.matdes.2021.110008
[3] 黄张洪, 曲恒磊, 邓超, 等. 航空用钛及钛合金的发展及应用. 材料导报, 2011, 25(1): 102 Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys. Mater Rev, 2011, 25(1): 102
[4] 刘莹莹, 陈子勇, 金头男, 等. 600 ℃高温钛合金发展现状与展望. 材料导报, 2018, 32(6): 1863 DOI: 10.11896/j.issn.1005-023X.2018.11.013 Liu Y Y, Chen Z Y, Jin T N, et al. Present situation and prospect of 600 ℃ high-temperature titanium alloys. Mater Rev, 2018, 32(6): 1863 DOI: 10.11896/j.issn.1005-023X.2018.11.013
[5] Li S, Deng T S, Zhang Y H, et al. Review on the creep resistance of high-temperature titanium alloy. Trans Indian Inst Met, 2021, 74: 215 DOI: 10.1007/s12666-020-02137-x
[6] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展. 材料工程, 2016, 44(8): 1 DOI: 10.11868/j.issn.1001-4381.2016.08.001 Cai J M, Mi G B, Gao F, et al. Research and development of some advanced high temperature titanium alloys for aero-engine. J Mater Eng, 2016, 44(8): 1 DOI: 10.11868/j.issn.1001-4381.2016.08.001
[7] Khataee A, Flower H M, West D R F. New titanium‒aluminum‒X alloys for aerospace applications. J Mater Eng, 1988, 10(1): 37 DOI: 10.1007/BF02834112
[8] 王虎, 赵琳, 彭云, 等. 增材制造TiAl基合金的研究进展. 粉末冶金技术, 2022, 40(2): 110 DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009 Wang H, Zhao L, Peng Y, et al. Research progress of TiAl-based alloys fabricated by additive manufacturing. Powder Metall Technol, 2022, 40(2): 110 DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009
[9] 曹京霞, 黄旭, 弭光宝, 等. Ti‒V‒Cr系阻燃钛合金应用研究进展. 航空材料学报, 2014, 34(4): 92 DOI: 10.11868/j.issn.1005-5053.2014.4.009 Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti‒V‒Cr burn resistant titanium alloys. J Aeron Mater, 2014, 34(4): 92 DOI: 10.11868/j.issn.1005-5053.2014.4.009
[10] Falodun O E, Obadele B A, Oke S R, et al. Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol, 2019, 102(5): 1689
[11] Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix manocomposites: a review. J Nanomater, 2012, 2012: 983470
[12] Patil C S, Ansari M I, Selvan R, et al. Influence of micro B4C ceramic particles addition on mechanical and wear behavior of aerospace grade Al‒Li alloy composites. Sādhanā, 2021, 46(1): 11
[13] 邝玮, 王敏敏, 李九霄, 等. 原位自生(TiB+La2O3)/TC4钛基复合材料的显微组织和力学性能. 机械工程材料, 2015, 39(2): 67 Kuang W, Wang M M, Li J X, et al. Microstructure and mechanical properties of In-situ synthesized (TiB+La2O3)/TC4 titanium matrix composite. Mater Mech Eng, 2015, 39(2): 67
[14] Dadkhah M, Mosallanejad M H, Iuliano L, et al. A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: potential, challenges, and feasible solutions. Acta Metall Sinica, 2021, 34(9): 1173 DOI: 10.1007/s40195-021-01249-7
[15] 戚继球. 熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013 Qi J Q. Microstructure and High-Temperature Deformation Behavior of TiC Reinforced High-Temperature Titanium Alloy Matrix Composites Produced by Melting-Casting Process [Dissertation]. Harbin: Harbin Institute of Technology, 2013
[16] Yamamoto T, Otsuki A, Ishihara K, et al. Synthesis of near net shape high density TiB/Ti composite. Mater Sci Eng A, 1997, A239-240: 647
[17] Liu B, Liu Y, He X Y, et al. Preparation and mechanical properties of particulate-reinforced powder metallurgy titanium matrix composites. Metall Mater Trans A, 2007, 38(11): 2825 DOI: 10.1007/s11661-007-9329-9
[18] Durai Murugan P, Vijayananth S, Natarajan M P, et al. A current state of metal additive manufacturing methods: A review. Mater Today, 2022, 59: 1277
[19] Shakil S I, Smith N R, Yoder S P, et al. Post fabrication thermomechanical processing of additive manufactured metals: A review. J Manuf Process, 2022, 73: 757 DOI: 10.1016/j.jmapro.2021.11.047
[20] Ahn D G. Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. Int J Precis Eng Manuf, 2016, 3(4): 381
[21] Pototzky P, Maier H J, Christ H J. Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834. Metall Mater Trans A, 1998, 29(12): 2995 DOI: 10.1007/s11661-998-0207-x
[22] 王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景. 航空材料学报, 2014, 34(4): 1 DOI: 10.11868/j.issn.1005-5053.2014.4.001 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective. J Aeron Mater, 2014, 34(4): 1 DOI: 10.11868/j.issn.1005-5053.2014.4.001
[23] 王瑞琴, 葛鹏, 侯鹏, 等. 固溶和时效温度对IMI834钛合金板材组织和性能的影响. 金属热处理, 2021, 46(3): 96 DOI: 10.13251/j.issn.0254-6051.2021.03.019 Wang R Q, Ge P, Hou P, et al. Effects of solution treatment and aging temperature on microstructure and mechanical properties of IMI834 titanium alloy plate. Heat Treat Met, 2021, 46(3): 96 DOI: 10.13251/j.issn.0254-6051.2021.03.019
[24] 史蒲英, 张永强, 孙峰, 等. 固溶时效温度对IMI834钛合金组织和性能的影响. 特种铸造及有色合金, 2017, 37(9): 936 DOI: 10.15980/j.tzzz.2017.09.003 Shi P Y, Zhang Y Q, Sun F, et al. Influences of solution and aging temperature on microstructure and mechanical properties of the IM1834 alloy. Spec Cast Nonferrous Alloys, 2017, 37(9): 936 DOI: 10.15980/j.tzzz.2017.09.003
[25] 车晋达, 姜贝贝, 王清, 等. 微量元素添加对Ti1100合金的高温抗氧化及耐蚀性能影响. 稀有金属材料与工程, 2018, 47(5): 1471 Che J D, Jiang B B, Wang Q, et al. Effects of minor additions of elements into Ti1100 on elevated temperature oxidation- and corrosion-resistance. Rare Met Mater Eng, 2018, 47(5): 1471
[26] 付艳艳, 宋月清, 惠松骁, 等. 航空用钛合金的研究与应用进展. 稀有金属, 2006, 30(6): 850 DOI: 10.3969/j.issn.0258-7076.2006.06.028 Fu Y Y, Song Y Q, Hui S X, et al. Research and application of typical aerospace titanium alloys. Chin J Rare Met, 2006, 30(6): 850 DOI: 10.3969/j.issn.0258-7076.2006.06.028
[27] 何春艳, 张利军. 国内外高温钛合金的发展与应用. 世界有色金属, 2016(1): 21 He C Y, Zhang L J. The development and application of high temperature titanium alloy at domestic and abroad. World Nonferrous Met, 2016(1): 21
[28] 付彬国. 合金元素对铸造Ti-1100合金组织及性能影响[学位论文]. 哈尔滨: 哈尔滨工业大学, 2015 Fu B G. Effects of Alloying Elements on Microstructures and Properties of Cast Ti-1100 Alloys [Dissertation]. Harbin: Harbin Institute of Technology, 2015
[29] 郭杰, 岳颗, 胡钊华, 等. 航空航天用Ti60高温钛合金铸锭制备工艺. 钢铁钒钛, 2021, 42(6): 138 DOI: 10.7513/j.issn.1004-7638.2021.06.019 Guo J, Yue K, Hu Z H, et al. Preparation of Ti60 high temperature titanium alloy ingot for aerospace. Iron Steel Vanadium Titanium, 2021, 42(6): 138 DOI: 10.7513/j.issn.1004-7638.2021.06.019
[30] 汤海芳, 赵永庆, 洪权, 等. 稀土元素对高温钛合金组织和性能的影响. 钛工业进展, 2010, 27(1): 16 DOI: 10.3969/j.issn.1009-9964.2010.01.003 Tang H F, Zhao Y Q, Hong Q, et al. Effects of rare earth elements on the structure and properties of high-temperature titanium alloy. Titanium Ind Prog, 2010, 27(1): 16 DOI: 10.3969/j.issn.1009-9964.2010.01.003
[31] 赵子博, 王清江, 刘建荣, 等. Ti60合金棒材中的织构及其对拉伸性能的影响. 金属学报, 2015, 51(5): 561 DOI: 10.11900/0412.1961.2014.00451 Zhao Z B, Wang Q J, Liu J R, et al. Texture of Ti60 alloy precision bars and its effect of tensile properties. Acta Met Sin, 2015, 51(5): 561 DOI: 10.11900/0412.1961.2014.00451
[32] 赵亮, 刘建荣, 王清江, 等. 析出相对Ti60钛合金蠕变和持久性能的影响. 材料研究学报, 2009, 23(1): 1 DOI: 10.3321/j.issn:1005-3093.2009.01.001 Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy. Chin J Mater Res, 2009, 23(1): 1 DOI: 10.3321/j.issn:1005-3093.2009.01.001
[33] 赵会宇, 张媚, 于佳石, 等. 石墨烯/Ti60复合材料组织与力学性能研究. 钛工业进展, 2022, 39(2): 29 DOI: 10.11782/j.issn.1009-9964.2022.2.tgyjz202202006 Zhao H Y, Zhang M, Yu J S, et al. Research on microstructure and mechanical properties of graphene/Ti60 composites. Titanium Ind Prog, 2022, 39(2): 29 DOI: 10.11782/j.issn.1009-9964.2022.2.tgyjz202202006
[34] 谢洪志, 刘广鑫, 彭皓云, 等. Ti65钛合金板材高温力学性能及影响因素. 兵器材料科学与工程, 2022, 45(2): 26 DOI: 10.14024/j.cnki.1004-244x.20211129.001 Xie H Z, Liu G X, Peng H Y, et al. High temperature mechanical properties and influencing factors of Ti65 titanium alloy sheet. Ordn Mater Sci Eng, 2022, 45(2): 26 DOI: 10.14024/j.cnki.1004-244x.20211129.001
[35] Zhao D, Fan J K, Zhang Z X, et al. Microstructure and texture variations in high temperature titanium alloy Ti65 sheets with different rolling modes and heat treatments. Materials, 2020, 13(11): 2466 DOI: 10.3390/ma13112466
[36] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展. 航空材料学报, 2020, 40(3): 77 DOI: 10.11868/j.issn.1005-5053.2020.000061 Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field. J Aeron Mater, 2020, 40(3): 77 DOI: 10.11868/j.issn.1005-5053.2020.000061
[37] Nyanor P, El-Kady O, Yehia H M, et al. Effect of bimodal-sized hybrid TiC-CNT reinforcement on the mechanical properties and coefficient of thermal expansion of aluminium matrix composites. Met Mater Int, 2021, 27(4): 753 DOI: 10.1007/s12540-020-00802-w
[38] Hu Y B, Cong W L, Wang X L, et al. Laser deposition-additive manufacturing of TiB‒Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Composites Part B, 2018, 133: 91 DOI: 10.1016/j.compositesb.2017.09.019
[39] 郑博文, 袁晓光, 董福宇, 等. La2O3含量对(TiC+TiB)/IMI834复合材料组织及耐磨性的影响. 铸造, 2021, 70(8): 933 DOI: 10.3969/j.issn.1001-4977.2021.08.006 Zheng B W, Yuan X G, Dong F Y, et al. Effect of La2O3 content on microstructures and wear resistance of IM834 matrix composites. Foundry, 2021, 70(8): 933 DOI: 10.3969/j.issn.1001-4977.2021.08.006
[40] Qin Y X, Zhang D, Lu W J, et al. Oxidation behavior of in situ-synthesized (TiB+TiC)/Ti6242 composites. Oxid Met, 2006, 66(5): 253
[41] 神祥博. SPS制备TiB增强Ti基复合材料的组织结构和力学性能研究[学位论文]. 北京: 北京理工大学, 2014 Shen X B. Microstructure and Mechanical Properties of in situ TiB Reinforced Titanium Matrix Compositre Prepared by SPS [Dissertation]. Beijing: Beijing Institute of Technology, 2014
[42] Attar H, Bönisch M, Calin M, et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J Mater Res, 2014, 29(17): 1941 DOI: 10.1557/jmr.2014.122
[43] Li Y Y, Zhu F W, Qiao Z L. Study on mechanical alloying of TiB2 particulate reinforced titanium matrix composites. Appl Mech Mater, 2018, 875: 41 DOI: 10.4028/www.scientific.net/AMM.875.41
[44] 张亮亮, 周阳, 刘世锋, 等. 模具钢增材制造及其性能的研究进展. 中国冶金, 2022, 32(3): 1 DOI: 10.13228/j.boyuan.issn1006-9356.20210661 Zhang L L, Zhou Y, Liu S F, et al. Research progress in additive manufacturing and properties of die steel. China Metall, 2022, 32(3): 1 DOI: 10.13228/j.boyuan.issn1006-9356.20210661
[45] Radhakrishnan M, Hassan M M, Long B E, et al. Microstructures and properties of Ti/TiC composites fabricated by laser-directed energy deposition. Addit Manuf, 2021, 46: 102198
[46] Attar H, Löber L, Funk A, et al. Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Mater Sci Eng A, 2015, 625: 350 DOI: 10.1016/j.msea.2014.12.036
[47] Attar H, Prashanth K G, Zhang L C, et al. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol, 2015, 31(10): 1001 DOI: 10.1016/j.jmst.2015.08.007
[48] Li H L, Jia D C, Yang Z H, et al. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Ti–6Al–4V and TiB/Ti–6Al–4V composite: a comparative study. Mater Sci Eng A, 2021, 801: 140415 DOI: 10.1016/j.msea.2020.140415
[49] Cai C, Radoslaw C, Zhang J L, et al. In-situ preparation and formation of TiB/Ti‒6Al‒4V nanocomposite via laser additive manufacturing: microstructure evolution and tribological behavior. Powder Technol, 2019, 342: 73 DOI: 10.1016/j.powtec.2018.09.088
[50] Sato Y, Tsukamoto M, Masuno S, et al. Investigation of the microstructure and surface morphology of a Ti6Al4V plate fabricated by vacuum selective laser melting. Appl Phys A, 2016, 122: 439 DOI: 10.1007/s00339-016-9996-8
[51] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf, 2006, 46(12): 1459
[52] Yan L, Li W, Chen X Y, et al. Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM, 2017, 69(3): 586 DOI: 10.1007/s11837-016-2211-8
[53] Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54: 98 DOI: 10.1016/j.optlastec.2013.05.011
[54] Wang L, Cheng J, Qiao Z H, et al. Tribological behaviors of in situ TiB2 ceramic reinforced TiAl-based composites under sea water environment. Ceram Int, 2017, 43(5): 4314 DOI: 10.1016/j.ceramint.2016.12.075
[55] 丁红燕, 周长培, 章跃, 等. Ti/TiB2多层膜在Hank's模拟体液中耐蚀性研究. 真空科学与技术学报, 2014, 34(6): 611 Ding H Y, Zhou C P, Zhang Y, et al. Corrosion resistance of Ti/TiB2 multilayers in Hank's solution. Chin J Vacuum Sci Technol, 2014, 34(6): 611
[56] 钦兰云, 门继华, 赵朔, 等. TiB2含量对选区激光熔化TiB/Ti‒6Al‒4V复合材料组织及力学性能的影响. 中国激光, 2021, 48(6): 0602102 DOI: 10.3788/CJL202148.0602102 Qin L Y, Men J H, Zhao S, et al. Effect of TiB content on microstructure and mechanical properties of TiB/Ti‒6Al‒4V composites formed by selective laser melting. Chin J Lasers, 2021, 48(6): 0602102 DOI: 10.3788/CJL202148.0602102
[57] Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des, 2016, 105: 160 DOI: 10.1016/j.matdes.2016.05.070
[58] Li H L, Yang Z H, Cai D L, et al. Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions. Mater Des, 2020, 185: 108245 DOI: 10.1016/j.matdes.2019.108245
[59] Fang M H, Han Y F, Shi Z S, et al. Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Composites Part B, 2021, 211: 108683 DOI: 10.1016/j.compositesb.2021.108683
[60] Xiao L H, Huang S Q, Wang Y, et al. Preparation and characterization of the anti-high temperature oxidation borosilicate glass coating on TC4 titanium alloy. J Mater Eng Perform, 2022, 31(1): 534 DOI: 10.1007/s11665-021-06189-y
[61] 丁超. 粉末冶金Ti600合金组织和性能的研究[学位论文]. 辽宁: 沈阳工业大学, 2019 Ding C. Microstructures and Properties of Powder Metallurgy Ti600 Alloy [Dissertation]. Shenyang: Shenyang University of Technology, 2019
[62] Bermingham M J, Mcdonald S D, Dargusch M S. Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti‒6Al‒4V produced by additive manufacturing. Mater Sci Eng A, 2018, 719: 1 DOI: 10.1016/j.msea.2018.02.012
[63] Feng Y Q, Feng K, Yao C W, et al. Microstructure and properties of in-situ synthesized (Ti3Al + TiB)/Ti composites by laser cladding. Mater Des, 2018, 157: 258 DOI: 10.1016/j.matdes.2018.07.045
[64] Feng Y Q, Feng K, Yao C W, et al. Effect of LaB6 addition on the microstructure and properties of (Ti3Al + TiB)/Ti composites by laser cladding. Mater Des, 2019, 181: 107959 DOI: 10.1016/j.matdes.2019.107959
[65] Nartu M S K K Y, Pole M, Mantri S A, et al. Process induced multi-layered titanium-boron carbide composites via additive manufacturing. Add Manuf, 2021, 46: 102156
[66] Zhang Y Z, Wei Z M, Shi L K, et al. Characterization of laser powder deposited Ti–TiC composites and functional gradient materials. J Mater Process Technol, 2008, 206(1): 438