高级检索

粉末外摩擦系数试验研究进展

钟文镇, 杨潮, 柴银福, 石欣琳, 赵庆鑫, 陈超

钟文镇, 杨潮, 柴银福, 石欣琳, 赵庆鑫, 陈超. 粉末外摩擦系数试验研究进展[J]. 粉末冶金技术, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013
引用本文: 钟文镇, 杨潮, 柴银福, 石欣琳, 赵庆鑫, 陈超. 粉末外摩擦系数试验研究进展[J]. 粉末冶金技术, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013
ZHONG Wenzhen, YANG Chao, CHAI Yinfu, SHI Xinlin, ZHAO Qingxin, CHEN Chao. Research progress on external friction coefficient test of powders[J]. Powder Metallurgy Technology, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013
Citation: ZHONG Wenzhen, YANG Chao, CHAI Yinfu, SHI Xinlin, ZHAO Qingxin, CHEN Chao. Research progress on external friction coefficient test of powders[J]. Powder Metallurgy Technology, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013

粉末外摩擦系数试验研究进展

基金项目: 国家自然科学基金资助项目(51605192);山东省重点研发计划资助项目(2017GGX203001);山东省中青年科学家科研奖励基金资助项目(BS2015NJ009)
详细信息
    通讯作者:

    钟文镇: E-mail: me_zhongwz@ujn.edu.cn

  • 中图分类号: TF122;TG376.3

Research progress on external friction coefficient test of powders

More Information
  • 摘要:

    粉末与界面的外摩擦行为受粉末的材料性能、模壁表面粗糙度、相对运动速度、温度和压力等因素的影响,不合理的外摩擦行为很容易造成粉末加工装备的磨损以及制品密度分布不均匀。为探究粉末的外摩擦行为,深入考察了国内外粉末外摩擦系数的研究进展,归纳和总结了粉末外摩擦系数的测试方法。根据载荷不同,将粉末外摩擦系数测试方法分为小载荷测试方法和大载荷测试方法,其中,小载荷外摩擦系数测试方法包括斜面法和平板法,大载荷外摩擦系数测试方法包括旋转法、剪切法和闭模法。遵循以上分类方法,进一步阐述了各种测试方法的原理、测试设备以及获取的重要结论。结果表明,小载荷作用下的测试方法仅适用于测量低相对密度粉末的外摩擦系数,测试中的压制力一般低于粉末重量的100倍。大载荷作用下的测试方法更常用于高相对密度粉末的外摩擦系数测量,测试中的压制力因材料而异,聚合物材料的压制力通常在粉末重量的0.5×103~1.0×105倍,金属材料的压制力在粉末重量的105~107倍。

    Abstract:

    The external friction behavior between the interface and powders is affected by the properties of the powders, the surface roughness of dies, the relative motion speed, temperature, and pressure. Unreasonable external friction behavior may cause the wear of powder processing equipment and the uneven density distribution of products. To explore the external friction behavior of powders, the research progress of powder external friction coefficient was thoroughly investigated, and the testing methods of powder external friction coefficient were summarized. According to the loads, the testing methods of powder external friction coefficient are composed of small load testing methods and heavy load testing methods. The small load testing methods include slope method and plate method, and the heavy load testing methods include rotation method, shear method, and closed mold method. The principle, testing equipment, and important conclusions of those various testing methods were briefly described in this paper. The results show that, the test methods under the small load are only suitable for the external friction coefficient of powders with low relative density, and the pressing force in the test is generally less than 100 times of powder weight. The test methods under the heavy load are more commonly used for measuring the external friction coefficient of powders with high relative density; the pressing force of polymer materials is usually 0.5×103~1.0×105 times of powder weight, while that of metal materials is 105~107 times of powder weight.

  • 锆酸钙材料(CaZrO3)具有优秀的抗水化性能、高熔点及良好的抗热震性能[1-5],拥有广阔的应用前景,由于自然界中不存在天然的CaZrO3,研究锆酸钙材料的合成就显得非常必要。制备CaZrO3的方法主要包括高温固相反应法、共沉淀法、溶胶-凝胶法、燃烧法和水热法等[6-8],高温固相法由于工艺简单、生产成本较低和生产量大等优点被人们广泛使用,但这种方法存在烧结温度高、制备锆酸钙致密性差等缺点。为了解决这些问题,研究者们在制备锆酸钙材料过程中向物系添加少量稀土氧化物、Al2O3、SiO2、CuO等添加剂,用于促进锆酸钙在低温下的烧结致密化;这些添加剂虽然可以起到促进锆酸钙材料烧结致密性的作用[9-11],但也会带来外来物质,降低CaZrO3高温使用性能。

    CaCO3作为制备CaZrO3的添加剂在高温下分解生成CaO,不会对CaZrO3产生污染;同时,由于CaCO3和制备原料Ca(OH)2分解温度不同,产生CaO晶体顺序不同,可以对CaO晶体质点的扩散产生影响。故本文考虑向锆酸钙材料中添加少量CaCO3微粉,利用分解温度不同,生成CaO晶体顺序不同,促进CaZrO3烧结致密性,降低锆酸钙烧结温度。

    以天津市科密欧化学试剂有限公司生产的分析纯Ca(OH)2和天津市光复精细化工研究生产的m-ZrO2为主要原料(平均粒度为7.4 μm和4.5 μm,纯度大于99%),实验中添加的CaCO3微粉为高纯微粉,纯度大于99%,其粒度分布如图 1示。可以看出,CaCO3微粉粒度较小,主要粒度分布在10 μm左右,D50为6 μm,D90为24 μm。

    图  1  CaCO3微粉的粒度分布
    Figure  1.  Particle size distribution of CaCO3 powders

    将Ca(OH)2和m-ZrO2按摩尔比1:1称量,等量分成五组,每组混合粉末中依次加入质量分数为0%、2%、4%、6%、8%和10%CaCO3微粉,再用卧式球磨机混合12 h,经过FLS手动四柱油压机在200 MPa压力下将混合粉末压制成ϕ20 mm圆柱试样,再用硅钼棒高温烧结炉在1600 ℃加热并保温3 h后随炉冷却到常温以备性能检测。

    烧结前将压好的试样放置在烘箱内110 ℃下保温24 h,取出冷却至常温,测量其高度(L0);试样经高温煅烧,冷却到常温后测量其烧后高度(L1),根据式(1)计算试样烧结前后线变化率(ΔLd)。

    $$ \Delta {L_{\rm{d}}} = \left[ {\left( {{L_1} - {L_0}} \right)/{L_0}} \right] \times 100\% $$ (1)

    利用阿基米德排水法检测试样煅烧后的体积密度和显气孔率[12]。煅烧后试样经切割、抛光及热处理后,采用扫描电子显微镜(scanning electron microscope,SEM)观察其组织形貌,使用X射线衍射仪(X-ray diffractometer,XRD)对其进行物相分析。

    图 2为烧结前后试样线变化率,从图 2可以看到,CaCO3微粉加入会改变试样线变化率。没有添加CaCO3微粉时,试样烧结前后线变化率为8.23%;当添加CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量增大,试样烧结前后线变化率逐渐增大;当加入CaCO3微粉质量分数为8%时,试样收缩率达到最大值,为14.89%;继续增大CaCO3微粉添加量,试样烧结前后线变化率呈降低趋势。

    图  2  线变化率与添加CaCO3微粉质量分数的关系
    Figure  2.  Relationship between shrinkage and the CaCO3 addition content by mass

    图 3为高温煅烧后制备的锆酸钙体积密度和显气孔率,由图 3可以看到,CaCO3微粉的引入对制备的锆酸钙烧结性能产生影响。当没有添加CaCO3微粉时,制备的锆酸钙体积密度为3.4 g·cm-3,显气孔率为14.5%;随CaCO3质量分数增加,制备锆酸钙体积密度逐渐增加,显气孔率逐渐减小;当CaCO3微粉添加量为8%时,制备锆酸钙的体积密度最大,为4.02 g·cm-3,显气孔率最小,为8.6%;当CaCO3质量分数继续增大时,锆酸钙的体积密度开始降低,显气孔率反增大。

    图  3  烧结试样体积密度、显气孔率与添加CaCO3质量分数的关系
    Figure  3.  Relationship of bulk density, apparent porosity, and CaCO3 addition content by mass of sintering samples

    图 4为添加质量分数10%CaCO3制备样品的X射线衍射图谱,从图中可以看出,样品经1600 ℃保温3 h后主要物相为CaZrO3以及少量CaZr4O18

    图  4  添加质量分数10%CaCO3微粉制备样品的X射线衍射图谱
    Figure  4.  XRD patterns of samples add by CaCO3 powders in the mass faction of 10%

    图 5为添加不同质量分数CaCO3微粉的样品在1600 ℃烧后放大10000倍的扫描电子显微组织结构图。从图 5可以看出,CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量的增大,试样致密性逐渐增加,锆酸钙晶粒尺寸逐渐变大,且晶体发育越来越均匀;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸最大,试样中基本无封闭气孔;当CaCO3微粉质量分数继续增大时,样品中出现封闭气孔,致密性变差,锆酸钙晶粒尺寸有变小趋势。

    图  5  添加不同质量分数CaCO3微粉的锆酸钙试样在1600 ℃烧结后扫描电子显微组织形貌:(a)0%;(b)2%;(c)4%;(d)6%;(e)8%;(f)10%
    Figure  5.  SEM micrographs of sintered CaZrO3 samples at 1600 ℃ added by CaCO3 powders in different mass fractions: (a) 0%; (b) 2%; (c) 4%; (d) 6%; (e) 8%; (f) 10%

    利用图象处理软件对图 5进行定量晶体大小测定,获得锆酸钙的平均晶粒尺寸,见表 1。可以发现,没有引入CaCO3微粉时,样品中锆酸钙晶粒尺寸最小为4.08 μm;随CaCO3微粉质量分数增大,锆酸钙晶粒尺寸逐渐增大;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸达到最大,为5.45 μm;当CaCO3微粉质量分数量继续增大时,锆酸钙晶粒尺寸反而变小。

    表  1  样品中CaCO3质量分数与锆酸钙晶粒直径的关系
    Table  1.  Relationship between CaZrO3 particle diameter and CaCO3 addition content by mass
    CaCO3质量分数/% 0 2 4 6 8 10
    CaZrO3晶粒直径/μm 4.08 4.43 4.88 5.08 5.45 5.21
    下载: 导出CSV 
    | 显示表格

    为了分析CaCO3微粉对锆酸钙烧结性能的影响,选取添加质量分数8%CaCO3微粉的试样,分别在500、600、700、800、900、1000及1100 ℃下保温3 h,分析在各个温度下烧后试样物相组成。图 6为试样在不同温度烧结后X射线衍射图谱。可以看出,试样经过500 ℃保温3 h后,物相组成没有太大变化;经过600 ℃保温3 h后,物相中开始有少量CaO出现,这是因为Ca(OH)2分解为CaO温度为580 ℃左右[13];当试样在700、800 ℃保温3 h后,Ca(OH)2质量分数逐渐减少,衍射峰逐渐减弱,CaO质量分数逐渐增大,衍射峰峰强逐渐增强,CaCO3衍射峰强在700 ℃之前逐渐增强,这是因为随烧结温度的升高,CaCO3晶粒发育越来越充分,烧成温度达到800 ℃时,CaCO3衍射峰强开始减弱,说明CaCO3开始分解为CaO;烧结温度为900 ℃时,CaCO3衍射峰逐渐减弱,CaO峰强增加迅速,这是因为CaCO3理论分解温度为850 ℃左右[14],分解生成高活性的CaO微晶均匀附着在Ca(OH)2分解形成CaO晶体表面,从而有利于CaO晶体扩散,可以促进CaO晶体长大,提高了CaO晶体的均匀性和生长致密性;继续升高烧结温度,CaCO3衍射峰强逐渐减弱乃至消失。

    图  6  添加质量分数8%CaCO3试样在不同温度烧结后X射线衍射图谱
    Figure  6.  XRD patterns of samples sintered at different temperatures add by CaCO3 powders in the mass faction of 8%

    当烧结温度达到900 ℃时,物相中开始出现CaZrO3衍射峰,说明开始生成CaZrO3。随烧结温度的提高,CaZrO3衍射峰强增加迅速,一部分原因是因为温度升高,CaZrO3迅速长大,另一部分原因是因为CaCO3分解CaO微晶附着在Ca(OH)2分解形成的CaO晶体表面,促进CaO晶体长大,为高温下CaO和ZrO2反应生成CaZrO3奠定基础。但添加过多的CaCO3微粉时,由于CaCO3在分解过程中产生过量CO2气体逸出形成大量的气体孔洞,不利于质点的迁移,导致烧结性能变差。

    (1)添加少量CaCO3微粉有利于锆酸钙烧结致密性。没有添加CaCO3微粉时,烧结温度为1600 ℃,锆酸钙体积密度为3.40 g·cm-3,显气孔率为14.5%;添加质量分数8%CaCO3微粉时,锆酸钙体积密度为4.02 g·cm-3,显气孔率为8.6%。

    (2)添加少量CaCO3微粉有利于锆酸钙晶粒长大。烧结温度为1600 ℃,无添加CaCO3微粉时,锆酸钙晶粒尺寸为4.08 μm;添加质量分数8%CaCO3微粉时,锆酸钙晶粒尺寸为5.45 μm。

  • 图  1   斜面法粉末滑动摩擦系数测量装置示意图[25]

    Figure  1.   Schematic diagram of the measuring device for the sliding friction coefficient of powders[25]

    图  2   不同界面下小麦粉滑动摩擦角与粒径的变化曲线[25]

    Figure  2.   Variation curves of sliding friction angle and particle size between wheat flour and different interfaces[25]

    图  3   粉末摩擦系数倾斜仪[26]

    Figure  3.   Friction inclinometer of powder coefficient[26]

    图  4   动摩擦系数与细颗粒体积分数的关系[26]

    Figure  4.   Relationship between kinetic friction coefficient and fine particle volume fraction[26]

    图  5   平板法实验装置示意图[27]

    Figure  5.   Schematic diagram of plate method experimental device[27]

    图  6   玻璃颗粒与不同板件的最大摩擦力随法向载荷变化情况[27]:(a)PVC板-玻璃珠;(b)铝板-玻璃珠

    Figure  6.   Maximum frictional force between glass particles and different plates as a function of normal loads[27]: (a) PVC board-glass beads; (b) aluminum plate-glass beads

    图  7   平板法滑动摩擦系数示意图[42]

    Figure  7.   Schematic diagram of sliding friction coefficient by plate method[42]

    图  8   玻璃珠与不同界面间压力与滑动摩擦力关系曲线[42]

    Figure  8.   Variation curves between pressure and sliding friction between glass beads and different interfaces[42]

    图  9   卧式粉末摩擦系数测量装置[29]

    Figure  9.   Horizontal powder friction coefficient measuring device[29]

    图  10   不同粉末的摩擦系数随压力变化情况[30]

    Figure  10.   Curves of external friction coefficient for the different powders as a function of pressure[30]

    图  11   Solimanjad和Larsson摩擦系数测试装置[31]

    Figure  11.   Friction coefficient test device by Solimanjad and Larsson[31]

    图  12   不同压坯密度铁粉摩擦系数随时间变化曲线[31]

    Figure  12.   Variation curves of external friction coefficient for the iron powders with different compact density and time[31]

    图  13   剪切法测试原理示意图[17]

    Figure  13.   Schematic diagram of the shear method test principle[17]

    图  14   不同压强下铜基粉末的摩擦系数随时间变化曲线[32]

    Figure  14.   Variation curves of friction coefficient for the copper-based powders with time under different pressures[32]

    图  15   铁基粉末摩擦系数随时间的变化曲线[33]

    Figure  15.   Variation curves of friction coefficient for the iron-based powders with time[33]

    图  16   Cameron等采用的剪切摩擦系数测试装置[48]

    Figure  16.   Shear friction coefficient test device by Cameron[48]

    图  17   铁粉平均压实密度与摩擦系数的关系[48]

    Figure  17.   Relationship between the average compacted density of iron powders and friction coefficient[48]

    图  18   Korachkin等采用的摩擦系数测试装置[11]

    Figure  18.   Friction coefficient testing device by Korachkin[11]

    图  19   合金钢粉摩擦系数与压制时间的变化曲线[11]

    Figure  19.   Variation curve of the friction coefficient and pressing time for the alloy steel powders[11]

    图  20   氮化硅陶瓷和硬质合金粉末摩擦系数与冲头位移的变化曲线[12]

    Figure  20.   Variation curves of friction coefficient and punch displacement between the silicon nitride ceramic and cemented carbide powders[12]

    图  21   不同润滑剂下铁基粉末摩擦系数与压制时间的变化曲线[34]

    Figure  21.   Variation curve of friction coefficient and pressing time of iron based powder under different lubricants[34]

    图  22   不同润滑剂含量(质量分数)下铁基粉末压制时间与摩擦系数的变化曲线[35]:(a)干混;(b)湿混

    Figure  22.   Variation curves of pressing time and friction coefficient for the iron based powders with different lubricant content (mass fraction)[35]: (a) dry mixed; (b) wet mixed

    图  23   获取模壁摩擦力装置[40]:(a)压制阶段;(b)脱模阶段

    Figure  23.   Device of the die wall friction[40]: (a) suppression stage; (b) demoulding stage

    图  24   Wikman采用的闭模法摩擦系数测试装置[36]

    Figure  24.   Closed moldmethod friction coefficient testing device by Wikma[36]

    图  25   Guyoncourt采用的摩擦系数测试装置[37]

    Figure  25.   Friction coefficient test device by Guyoncourt[37]

    图  26   Lindskog采用的摩擦系数测量装置[50]

    Figure  26.   Friction coefficient measuring device by Lindskog[50]

    图  27   Tien采用的闭模法模壁摩擦力测试装置[51]

    Figure  27.   Closed mold method mold wall friction test device by Tien[51]

    图  28   铁粉相对密度与外摩擦系数的关系[36]

    Figure  28.   Relationship between the relative density of iron powders and the coefficient of external friction[36]

    图  29   不同压制速度下铝粉密度与外摩擦系数的关系[37]

    Figure  29.   Relationship between aluminum powder density and external friction coefficient at different pressing speeds[37]

    图  30   模壁摩擦力测量装置实物图

    Figure  30.   Physical drawing of the mould friction force measuring device

    图  31   试验时间与上下模冲压强的关系

    Figure  31.   Relationship between test time and punching strength of upper and lower dies

    图  32   不同H/D下摩擦系数与相对密度的关系[55]

    Figure  32.   Relationship between friction coefficient and relative density under the different H/D values[55]

    图  33   药粉压制过程摩擦系数测试示意图[39]

    Figure  33.   Schematic diagram of friction coefficient test during powder pressing process[39]

    图  34   上模冲速度与不同药粉的外摩擦系数变化曲线[39]

    Figure  34.   Variation curves of upper die punching speed and external friction coefficient of different powders[39]

    图  35   微晶纤维素的摩擦系数与径向力的变化曲线[60]

    Figure  35.   Change curve of friction coefficient and radial force of microcrystalline cellulose[60]

    图  36   闭模法摩擦系数测量装置[63]

    Figure  36.   Friction coefficient measuring device for closed mold method[63]

    图  37   不同粉末的壁面径向力随时间的变化曲线

    Figure  37.   Variation curves of wall radial force with time for the different powders

    表  1   常用的粉末外摩擦系数测试方法以及测试结果

    Table  1   External friction coefficient test methods and test results for the commonly used powders

    测试方法材料密度 / (g·cm−3)压强 / MPa压制力/重力外摩擦系数
    小载荷斜面法小麦粉[25]重力10.57~1.20
    石英砂[26]重力10.15~0.35
    平板法玻璃珠[27]0.600.01100.18~0.20
    大载荷旋转法胶粉[28]0.90~1.000.50~3.50140098000.20~0.80
    聚乙烯树脂[28]0.91~0.960.50~3.50140098000~0.12
    超高分子聚乙烯[29]0.94~0.960.50~3.50140098000.01~0.06
    滑石粉[29]2.70~2.800.50~3.50470~33000.30~0.90
    PP粉(聚丙烯)[30]0.910.50~3.50150098000.20~0.40
    PVC(聚氯乙烯)[30]1.380.50~3.50920~64000.20~0.50
    铁粉[31]5.00~6.2050~2001666600.40~0.80
    剪切法铜基粉末[32]255~4784444000.08~0.16
    铁基粉末[33]5.80~7.00200~700425000.10~0.45
    铁基粉末(加润滑剂)[34-35]6.95~7.036004239000.15~0.25
    闭模法铁粉[36]3.00~7.33450256600.20~1.00
    铝粉[37]3.80~7.006505100000.06~0.16
    水雾化铁粉(加润滑剂)[38]4.62~6.16200.15~0.25
    SDMan(喷雾干燥甘露醇)[39]150、2500.05~0.15
    CaSul(硫酸钙)[39]150、2500.05~0.15
    Glac(单水乳糖)[39]150、2500.05~0.15
    ACP(无水磷酸氢钙)[39]150、2500.05~0.10
    下载: 导出CSV
  • [1] 秦琴, 王禹峰. 超细粉末制备工艺的研究现状. 热加工工艺, 2018, 47(4): 47

    Qin Q, Wang Y F. Research status of preparation technology of ultrafine powder. Hot Working Technol, 2018, 47(4): 47

    [2] 方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望. 粉末冶金技术, 2020, 38(4): 313

    Fang X L, Zheng H J. Application and prospect of copper-based powder metallurgy friction materials. Powder Metall Technol, 2020, 38(4): 313

    [3] 陈梦婷, 石建军, 陈国平. 粉末冶金发展状况. 粉末冶金工业, 2017, 27(4): 66

    Chen M T, Shi J J, Chen G P. Development of powder metallurgy. Powder Metall Ind, 2017, 27(4): 66

    [4]

    Homayoun H, Shahbaz M, Ebrahimi R. Investigation of floating and single-action dies in producing dense compacts with high aspect ratio. Iran J Sci Technol Trans Mech Eng, 2020, 44: 1005 DOI: 10.1007/s40997-019-00301-3

    [5]

    Singh R, Sharma A K, Design and development of modified cold compaction die for fabrication of nickel-titanium composite. Mater Sci Eng, 2021, 1136(1): 012001

    [6] 茹铮, 余望, 阮熙寰, 等. 塑性加工摩擦学. 北京: 科学出版社, 1992

    Ru Z, Yu W, Ruan X H, et al. Tribology in Metalforming. Beijing: Science Press, 1992

    [7]

    Zhong W, Anastasiya Z, Zhang l, et al. Powder flow during linear and rotary die filling. Int J Pharm, 2021, 602: 120654 DOI: 10.1016/j.ijpharm.2021.120654

    [8] 温诗铸, 黄平. 摩擦学原理. 北京: 清华学出版社, 2002

    Wen S Z, Huang P. Principles of Tribology. Beijing: Tsinghua University Press, 2002

    [9] 赵振铎, 邵明志, 张如铎. 金属塑性成形中的摩擦与润滑. 北京: 化学工业出版社, 2004

    Zhao Z D, Shao M Z, Zhang R D. Friction and Lubrication in Metal Plastic Forming. Beijing: Chemical Industry Press, 2004

    [10] 肖志瑜, 李元元, 倪东惠. 粉末冶金温压的致密化机理. 粉末冶金材料科学与工程, 2006(2): 85

    Xiao Z Y, Li Y Y, Ni D H. Densification mechanism of warm compaction in powder metallurgy. Mater Sci Eng Powder Metall, 2006(2): 85

    [11]

    Korachkin D, Gethin D T, Lewis R W, et al. Friction measurement and lubrication in unloading and ejection stages in powder pressing cycle. Powder Metall, 2008, 51(1): 14 DOI: 10.1179/174329008X271646

    [12]

    Bonnefoy V, Doremus P, Puente G. Investigations on friction behaviour of treated and coated tools with poorly lubricated powder mixes. Powder Metall, 2003, 46(3): 224 DOI: 10.1179/003258903225005439

    [13]

    Simchi A, Veltl G. Behaviour of metal powders during cold and warm compaction. Powder Metall, 2006, 49(3): 281 DOI: 10.1179/174329006X110844

    [14]

    Vié T, Harthong B, Imbault D, et al. On the lubricating efficiency of high-performance powder metallurgy lubricants. Powder Technol, 2022: 118019

    [15]

    Sinka I C, Cunningham J C, Zavaliangos A. Experimental characterization and numerical simulation of die wall friction in pharmaceutical powder compaction. Adv Powder Metall Part Mater, 2001(1): 1

    [16] 杨作梅, 郭玉明, 崔清亮, 等. 谷子摩擦特性试验及其影响因素分析. 农业工程学报, 2016, 32(16): 258

    Yang Z M, Guo Y M, Cui Q L, et al. Test and influence factors analysis of friction characteristics of millet. Trans Chin Soc Agric Eng, 2016, 32(16): 258

    [17] 刘永强, 贾明印, 薛平, 等. 聚合物摩擦因数测试技术研究进展. 塑料工业, 2020, 48(S1): 6

    Liu Y Q, Jia M Y, Xue P, et al. Research progress on polymer friction coefficient testing technology. China Plast Ind, 2020, 48(S1): 6

    [18] 侯成龙, 郭俊卿, 陈拂晓, 等. 金属粉末注射成形技术及其数值模拟. 粉末冶金技术, 2022, 40(1): 72

    Hou C L, Guo J Q, Chen F X, et al. Metal powder injection molding technology and numerical simulation. Powder Metall Technol, 2022, 40(1): 72

    [19] 王德广, 吴玉程, 焦明华, 等. 粉末成形过程中摩擦行为研究进展. 机械工程学报, 2009, 45(5): 12 DOI: 10.3901/JME.2009.05.012

    Wang D G, Wu Y C, Jiao M H, et al. Research progress of friction behavior during powder forming. J Mech Eng, 2009, 45(5): 12 DOI: 10.3901/JME.2009.05.012

    [20] 温诗铸. 我国摩擦学研究的现状与发展. 机械工程学报, 2004, 40(11): 1 DOI: 10.3901/JME.2004.11.001

    Wen S Z. Existing state and development of tribology research in China. Chin J Mech Eng, 2004, 40(11): 1 DOI: 10.3901/JME.2004.11.001

    [21]

    Güner F, Cora Ö N, Sofuoğlu H. Effects of friction models on the compaction behavior of copper powder. Tribol Int, 2018, 122: 125 DOI: 10.1016/j.triboint.2018.02.022

    [22] 孟凡净, 刘华博, 花少震, 等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析. 应用力学学报, 2021, 38(3): 1286

    Meng F J, Liu H B, Hua S Z, et al. Analysis of frictional mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing. Chin J Appl Mech, 2021, 38(3): 1286

    [23]

    Zhang H Z, Zhang L, Dong G Q, et al. Effects of annealing on high velocity compaction behavior and mechanical properties of iron-base PM alloy. Powder Technol, 2016, 288: 435 DOI: 10.1016/j.powtec.2015.10.040

    [24]

    Zhang W, Liu K, Zhou J, et al. Experimental investigation on stress and die-wall frictional characteristics of metal powder during high-velocity compaction. Mater Technol, 2021, 55(2): 163

    [25] 彭飞, 杨洁, 王红英, 等. 小麦粉摩擦特性的试验研究. 中国粮油学报, 2015, 30(8): 7

    Peng F, Yang J, Wang H Y, et al. Experimental research on friction characteristics of wheat meal. J Chin Cereal Oils Assoc, 2015, 30(8): 7

    [26] 刘宏伟, 杨情情, 苏志满. 颗粒材料底面动摩擦系数特征研究. 工程地质学报, 2020, 28(4): 740

    Liu H W, Yang Q Q, Su Z M. Characteristics of dynamic basal friction coefficient of bidisperse granular materials. J Eng Geol, 2020, 28(4): 740

    [27] 彭政, 王璐珠, 蒋亦民. 颗粒物质与固体交界面静摩擦系数的测量与分析. 山东大学学报(理学版), 2011, 46(1): 42

    Peng Z, Wang L Z, Jiang Y M. Measurement and analysis of static friction coefficient on a granular-solid interface. J Shandong Univ Nat Sci, 2011, 46(1): 42

    [28] 胡学永. 粉末材料动摩擦系数的实验研究[学位论文]. 北京: 北京化工大学, 2013

    Hu X Y. Experimental Study on the Kinetic Frictional Coefficient for Powder Materials [Dissertation]. Beijing: Beijing University of Chemical Technology, 2013

    [29] 杨彩霞. 粉末物料动摩擦系数的测试装置设计及其实验分析[学位论文]. 北京: 北京化工大学, 2012

    Yang C X. Testing Device Design and Experimental Study of Friction Coefficient of Power Materials [Dissertation]. Beijing: Beijing University of Chemical Technology, 2012

    [30] 张志广. 粉末材料动摩擦系数立式测定装置的设计及实验研究[学位论文]. 北京: 北京化工大学, 2015

    Zhang Z G. The Design of Vertical Measuring Device and Experimental Study of Dynamic Friction Coefficient of Powder Materials [Dissertation]. Beijing: Beijing University of Chemical Technology, 2015

    [31]

    Solimanjad N, Larsson R. Die wall friction and influence of some process parameters on friction in iron powder compaction. Mater Sci Technol, 2003, 19(12): 1777 DOI: 10.1179/026708303225009517

    [32] 蒋卿. 铜基粉末压制成形过程的数值模拟与实验研究[学位论文]. 合肥: 合肥工业大学, 2010

    Jiang Q. Numerical Simulation and Experiment Research of Copper-Based Powder Compacting Process [Dissertation]. Hefei: Hefei University of Technology, 2010

    [33] 谷曼, 焦明华, 孙龙, 等. 粉末压制过程中的摩擦行为研究. 热加工工艺, 2014, 43(9): 109

    Gu M, Jiao M H, Sun L, et al. Research on friction behavior in powder compaction process. Hot Working Technol, 2014, 43(9): 109

    [34]

    Chen W C, Cheng J G, Cheng L, et al. Improving the homogeneity and properties of ferrous powder mixes by a novel powder mixing process. Powder Metall, 2019, 62(2): 74 DOI: 10.1080/00325899.2019.1582830

    [35]

    Chen W C, Wang J H, Wang S P, et al. On the processing properties and friction behaviours during compaction of powder mixtures. Mater Sci Technol, 2020, 36(10): 1057 DOI: 10.1080/02670836.2020.1747779

    [36]

    Wikman B, Solimannezhad N, Larsson R, et al. Wall friction coefficient estimation through modelling of powder die pressing experiment. Powder Metall, 2000, 43(2): 132 DOI: 10.1179/003258900665880

    [37]

    Guyoncourt D M M, Tweed J H, Gough A, et al. Constitutive data and friction measurements of powders using instrumented die. Powder Metall, 2001, 44(1): 25 DOI: 10.1179/003258901666130

    [38]

    Cristofolini I, Molinari A, Pederzini G, et al. From experimental data, the mechanics relationships describing the behaviour of four different low alloyed steel powders during uniaxial cold compaction. Powder Metall, 2018, 61(1): 10 DOI: 10.1080/00325899.2017.1361507

    [39]

    Desbois L, Tchoreloff P, Mazel V. Influence of the punch speed on the die wall/powder kinematic friction during tableting. J Pharm Sci, 2019, 108(10): 3359 DOI: 10.1016/j.xphs.2019.05.007

    [40] 钟文镇. 获取颗粒材料压制力和模壁摩擦力的实验装置及实验方法: 中国专利, 201510673518.6, 2015-12-09

    Zhong W Z. Experimental Device and Experimental Method for Acquising: China Patent, 201510673518.6, 2015-12-09

    [41] 石欣琳, 钟文镇, 陈超, 等. 用于测量微小变形的粉末颗粒与模具壁摩擦系数的装置: 中国专利, 202020807060.5, 2021-01-05

    Shi X L, Zhong W Z, Chen C, et al. Apparatus for Measuring Minor Deformed Powder Particles to Die Wall Coefficient of Friction: China Patent, 202020807060.5, 2021-01-05

    [42]

    Tang H, Song R, Dong Y, et al. Measurement of restitution and friction coefficients for granular particles and discrete element simulation for the tests of glass beads. Materials, 2019, 12(19): 3170 DOI: 10.3390/ma12193170

    [43]

    Solimanjad N. New method for measuring and characterization of friction coefficient at wide range of densities in metal powder compaction. Powder Metall, 2003, 46(1): 49 DOI: 10.1179/003258903225010488

    [44]

    Larsson S H. Kinematic wall friction properties of reed canary grass powder at high and low normal stresses. Powder Technol, 2010, 198(1): 108 DOI: 10.1016/j.powtec.2009.10.022

    [45]

    King H M. Mechanical basis for certain familiar geologic structures. Geol Soc Am Bull, 1951, 62(4): 355 DOI: 10.1130/0016-7606(1951)62[355:MBFCFG]2.0.CO;2

    [46]

    Krantz R W. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. Tectonophysics, 1991, 188(1-2): 203 DOI: 10.1016/0040-1951(91)90323-K

    [47] 苗立荣. 螺旋沟槽衬套单螺杆挤出机固体输送段的研究[学位论文]. 北京: 北京化工大学, 2011

    Miao L R. Study on Solid Conveying Section in Helically Grooved Feed Single-Screw Extruder [Dissertation]. Beijing: Beijing University of Chemical Technology, 2011

    [48]

    Cameron I M, Gethin D T, Tweed J H. Friction measurement in powder die compaction by shear plate technique. Powder Metall, 2002, 45(4): 345 DOI: 10.1179/003258902225007069

    [49]

    Kim K T, Lee H T. Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing. Int J Mech Sci, 1998, 40(6): 507 DOI: 10.1016/S0020-7403(97)00063-5

    [50]

    Lindskog P, Andersson D C, Larsson P L. An experimental device for material characterization of powder materials. J Test Eval, 2013, 41(3): 504 DOI: 10.1520/JTE20120107

    [51]

    Tien Y M, Wu P L, Huang W H, et al. Wall friction measurement and compaction characteristics of bentonite powders. Powder Technol, 2007, 173(2): 140 DOI: 10.1016/j.powtec.2006.11.023

    [52]

    Shang C, Sinka I C, Pan J. Constitutive model calibration for powder compaction using instrumented die testing. Expe Mech, 2012, 52: 903 DOI: 10.1007/s11340-011-9542-8

    [53]

    Salmi K, Staf H, Larsson P L. On the relation between pressing energy and green strength at compaction of hard metal powders. J Mater Eng Perform, 2021, 30(4): 2545 DOI: 10.1007/s11665-021-05588-5

    [54]

    Cristofolini I, Molinari A, Pederzini G, et al. Study of the uniaxial cold compaction of AISI 316L stainless steel powders through single action tests. Powder Technol, 2016, 295: 284 DOI: 10.1016/j.powtec.2016.03.045

    [55]

    Cristofolini I, Pederzini G, Rambelli A, et al. Densification and deformation during uniaxial cold compaction of stainless steel powder with different particle size. Powder Metall, 2016, 59(1): 73 DOI: 10.1080/00325899.2015.1114747

    [56]

    Cristofolini I, Molinari A, Pederzini G, et al. The behaviour of low alloy steel powder during uniaxial cold compaction—influence of the geometry. J Jpn Soc Powder Powder Metall, 2019, 66(1): 3 DOI: 10.2497/jjspm.66.3

    [57]

    Nicewicz P, Sano T, Hogan J D. Confined uniaxial compression of granular stainless steel 316. Powder Technol, 2019, 353: 489 DOI: 10.1016/j.powtec.2019.05.041

    [58]

    Sinka I C, Cunningham J C, Zavaliangos A. The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker-Prager Cap model. Powder Technol, 2003, 133(1-3): 33 DOI: 10.1016/S0032-5910(03)00094-9

    [59]

    Shi X, Zhong W, Zhao Q, et al. Investigation of damping coefficients for elastic collision particles utilizing the acoustic frequency sampling method. Sci Rep, 2024, 14(1): 9060 DOI: 10.1038/s41598-024-57487-z

    [60]

    Aruffo G A, Michrafy M, Oulahna D, et al. Modelling powder compaction with consideration of a deep grooved punch. Powder Technol, 2022, 395: 681 DOI: 10.1016/j.powtec.2021.10.012

    [61] 钟文镇, 何克晶, 周照耀, 等. 粉末材料堆积的物理模型与仿真系统. 物理学报, 2009, 58(13): 21 DOI: 10.7498/aps.58.21

    Zhong W Z, He K J, Zhou Z Y, et al. Physical model and simulation system of powder packing. Acta Phys Sin, 2009, 58(13): 21 DOI: 10.7498/aps.58.21

    [62] 钟文镇, 何克晶, 周照耀, 等. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155 DOI: 10.7498/aps.58.5155

    Zhong W Z, He K J, Zhou Z Y, et al. Calibration of damping coefficient in discrete element method simulation. Acta Phys Sin, 2009, 58(8): 5155 DOI: 10.7498/aps.58.5155

    [63] 钟文镇, 陈超, 石欣琳, 等. 粉末滑动摩擦系数获取方法及装置: 中国专利, 202010409026.7, 2020-10-02

    Zhong W Z, Chen C, Shi X L, et al. Powder Sliding Coefficient of Friction Acquisition Method and Apparatus: China Patent, 202010409026.7, 2020-10-02

  • 期刊类型引用(1)

    1. 路跃,刘国齐,杨文刚,燕鹏飞,马渭奎,李红霞. 烧结助剂对锆酸钙材料性能的影响. 耐火材料. 2023(05): 407-411 . 百度学术

    其他类型引用(1)

图(37)  /  表(1)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  1006
  • PDF下载量:  29
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-19
  • 网络出版日期:  2022-12-20
  • 刊出日期:  2024-08-27

目录

/

返回文章
返回