高级检索

粉末外摩擦系数试验研究进展

钟文镇, 杨潮, 柴银福, 石欣琳, 赵庆鑫, 陈超

钟文镇, 杨潮, 柴银福, 石欣琳, 赵庆鑫, 陈超. 粉末外摩擦系数试验研究进展[J]. 粉末冶金技术, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013
引用本文: 钟文镇, 杨潮, 柴银福, 石欣琳, 赵庆鑫, 陈超. 粉末外摩擦系数试验研究进展[J]. 粉末冶金技术, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013
ZHONG Wenzhen, YANG Chao, CHAI Yinfu, SHI Xinlin, ZHAO Qingxin, CHEN Chao. Research progress on external friction coefficient test of powders[J]. Powder Metallurgy Technology, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013
Citation: ZHONG Wenzhen, YANG Chao, CHAI Yinfu, SHI Xinlin, ZHAO Qingxin, CHEN Chao. Research progress on external friction coefficient test of powders[J]. Powder Metallurgy Technology, 2024, 42(4): 437-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050013

粉末外摩擦系数试验研究进展

基金项目: 国家自然科学基金资助项目(51605192);山东省重点研发计划资助项目(2017GGX203001);山东省中青年科学家科研奖励基金资助项目(BS2015NJ009)
详细信息
    通讯作者:

    钟文镇: E-mail: me_zhongwz@ujn.edu.cn

  • 中图分类号: TF122;TG376.3

Research progress on external friction coefficient test of powders

More Information
  • 摘要:

    粉末与界面的外摩擦行为受粉末的材料性能、模壁表面粗糙度、相对运动速度、温度和压力等因素的影响,不合理的外摩擦行为很容易造成粉末加工装备的磨损以及制品密度分布不均匀。为探究粉末的外摩擦行为,深入考察了国内外粉末外摩擦系数的研究进展,归纳和总结了粉末外摩擦系数的测试方法。根据载荷不同,将粉末外摩擦系数测试方法分为小载荷测试方法和大载荷测试方法,其中,小载荷外摩擦系数测试方法包括斜面法和平板法,大载荷外摩擦系数测试方法包括旋转法、剪切法和闭模法。遵循以上分类方法,进一步阐述了各种测试方法的原理、测试设备以及获取的重要结论。结果表明,小载荷作用下的测试方法仅适用于测量低相对密度粉末的外摩擦系数,测试中的压制力一般低于粉末重量的100倍。大载荷作用下的测试方法更常用于高相对密度粉末的外摩擦系数测量,测试中的压制力因材料而异,聚合物材料的压制力通常在粉末重量的0.5×103~1.0×105倍,金属材料的压制力在粉末重量的105~107倍。

    Abstract:

    The external friction behavior between the interface and powders is affected by the properties of the powders, the surface roughness of dies, the relative motion speed, temperature, and pressure. Unreasonable external friction behavior may cause the wear of powder processing equipment and the uneven density distribution of products. To explore the external friction behavior of powders, the research progress of powder external friction coefficient was thoroughly investigated, and the testing methods of powder external friction coefficient were summarized. According to the loads, the testing methods of powder external friction coefficient are composed of small load testing methods and heavy load testing methods. The small load testing methods include slope method and plate method, and the heavy load testing methods include rotation method, shear method, and closed mold method. The principle, testing equipment, and important conclusions of those various testing methods were briefly described in this paper. The results show that, the test methods under the small load are only suitable for the external friction coefficient of powders with low relative density, and the pressing force in the test is generally less than 100 times of powder weight. The test methods under the heavy load are more commonly used for measuring the external friction coefficient of powders with high relative density; the pressing force of polymer materials is usually 0.5×103~1.0×105 times of powder weight, while that of metal materials is 105~107 times of powder weight.

  • γ基钛铝合金具有高比强度、低密度等优点,在高温结构材料领域受到广泛关注[16]。但室温延展性差、高温抗氧化性能不足制约了其在高温结构领域的应用[78],一般通过添加三元或四元合金元素来改善这两方面的不足。钛铝合金氧化膜为多层结构,由不同比例的氧化铝(Al2O3)和金红石(TiO2)非均匀混合物和金红石顶层所构成[9]。虽然这两种氧化物热力学稳定性相似,但Al2O3的生长速率慢于TiO2,而良好的抗氧化性取决于连续Al2O3的生成,因此,可以通过改变氧化层的特性来提高合金的抗氧化性。研究人员进行了大量合金化研究[10],比如在钛铝合金中添加Nb和Cr,虽然Nb和Cr的存在有助于促进连续致密的氧化层的形成,但也存在一些不足,固溶于基体合金中的Cr会降低基体中Al的含量,使合金的抗氧化性下降[11,12]。近年来,研究人员发现,添加微量稀土元素可以提高钛铝合金的高温抗氧化性,稀土元素的加入可以细化晶粒、净化基体、提高氧化膜的附着力,促进Al的选择性氧化[13]。Zhao等[14]研究了Y对Ti–45Al–8Nb在900 ℃高温抗氧化性能的影响,Y的添加降低了氧化膜的厚度并且有效改善了氧化膜与基体的结合力。

    稀土元素对改善钛铝合金高温抗氧化性能的研究越来越多,但稀土镱(Yb)、铈(Ce)对钛铝合金高温抗氧化性能的影响和作用机制还鲜有报道。放电等离子烧结技术(spark plasma sintering,SPS)具有升温速度快、烧结时间短、烧结合金相对密度高等优点[1516],本文采用放电等离子烧结制备添加微量Yb、Ce元素的Ti–45Al合金,系统研究了在800 ℃时钛铝合金的高温氧化行为以及Yb、Ce元素对钛铝合金抗氧化性能的影响。

    实验原料为高纯钛粉、铝粉、原子数分数为0.3%的Yb2O3粉末和原子数分数为0.3%的CeO2粉末。将原料粉末在行星球磨机中进行混合球磨,球磨介质为不锈钢球,球料比为3:1,以300 r·min‒1的转速球磨6 h。对球磨得到的粉末进行放电等离子烧结,烧结温度为1100 ℃,压力为30 MPa,保压时间5 min,随炉冷却后得到所需烧结合金。将制备的合金线切割成8 mm×3 mm的圆柱形试样,根据所含元素不同,制备3种合金试样,编号为1#、2#、3#,各试样化学成分见表1。逐次用400~2000目的碳化硅水砂纸磨至光滑,使用乙醇溶液超声波清洗10 min后吹干。高温氧化实验前将所制备的合金试样放入60 ℃烘箱烘干30 min,所用坩埚在850 ℃高温电阻炉中干燥,每30 min称重一次。当坩埚的重量没有进一步变化时,将氧化样品放入坩埚中。静态高温氧化实验在高温电阻炉(KSS-1400郑州)中进行,氧化温度为 800 ℃,样品的加热和冷却速率为4 ℃·min‒1。氧化时间分别为5、10、25、50、100 h,每一氧化时间设置3个样品进行测试,以验证数据的重复性。样品取出后在空气中冷却至室温,用电子天平(精确度0.1 mg)进行称量得到氧化质量增重,进一步得到氧化动力学曲线。

    表  1  实验制备试样的化学成分(原子数分数)及相对密度
    Table  1.  Chemical compositions (atomic fraction) and relative density of the samples %
    试样编号化学成分相对密度
    1#Ti–45Al98.2
    2#Ti–45Al–0.3Yb2O399.5
    3#Ti–45Al–0.3CeO293.4
    下载: 导出CSV 
    | 显示表格

    使用阿基米德排水法测量合金试样的相对密度,结果见表1。采用X射线衍射仪(X-ray diffraction,XRD;D8岛津高级衍射仪)分析合金试样和氧化产物的物相组成。利用扫描电子显微镜(scanning electron microscope,SEM;Zeiss Gemini 300显微镜)观察合金试样和氧化实验后氧化层的表面及截面显微形貌。通过金相显微镜观察钛铝合金的金相组织。

    图1为放电等离子烧结钛铝合金的X射线衍射图谱,图2为合金的显微形貌和金相组织。由图1可知,合金的主要组成相为α2-Ti3Al相和γ-TiAl相。从显微照片可以看出,3种合金的晶粒均为等轴晶,显微组织是由α2+γ片层晶团与等轴γ晶粒混合构成的双态组织。Ti–45Al–0.3Yb2O3/CeO2合金中的稀土元素弥散分布于晶界,达到细化晶粒,强化组织的效果。此外,加入稀土Yb后,合金中的孔洞明显减少,而加入稀土Ce的钛铝合金中的孔洞明显增多,这也是Ti–45Al–0.3CeO2相对密度降低的原因。

    图  1  钛铝合金的X射线衍射图谱
    Figure  1.  XRD patterns of the TiAl alloys
    图  2  钛铝合金的显微形貌和金相组织:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2;(d)Ti‒45Al;(e)Ti‒45Al‒0.3Yb2O3;(f)Ti‒45Al‒0.3CeO2
    Figure  2.  SEM images and metallographic images of TiAl alloys: (a) Ti−45Al; (b) Ti−45Al−0.3Yb2O3; (c) Ti−45Al−0.3CeO2; (d) Ti−45Al; (e) Ti−45Al−0.3Yb2O3; (f) Ti−45Al−0.3CeO2

    图3为放电等离子烧结钛铝合金的电子背散射衍射形貌(electron back-scattered diffraction,EBSD)及合金晶粒尺寸分布。由图3可知,加入稀土元素Yb或Ce使得合金晶粒尺寸得到细化。经统计,Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2三种合金的平均晶粒尺寸分别为28.46 μm、11.35 μm、13.83 μm,显然,在Ti‒45Al中添加稀土元素,尤其是稀土元素Yb的添加,使得晶粒明显细化。

    图  3  钛铝合金电子背散射衍射形貌和晶粒分布:(a)Ti‒45Al EBSD;(b)Ti‒45Al‒0.3Yb2O3 EBSD;(c)Ti‒45Al‒0.3CeO2 EBSD;(d)Ti‒45Al晶粒分布;(e)Ti‒45Al‒0.3Yb2O3晶粒分布;(f)Ti‒45Al‒0.3CeO2晶粒分布
    Figure  3.  EBSD and grain size distribution of TiAl alloys: (a) Ti‒45Al EBSD; (b) Ti‒45Al‒0.3Yb2O3 EBSD; (c) Ti‒45Al‒0.3CeO2 EBSD; (d) Ti‒45Al grain size distribution; (e) Ti‒45Al‒0.3Yb2O3 grain size distribution; (f) Ti‒45Al‒0.3CeO2 grain size distribution

    图4为Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2合金在800 ℃等温氧化100 h的单位面积质量变化和氧化速率。由图4可知,在总时间为100 h的高温氧化过程中,单位面积质量变化呈现出抛物线规律,氧化速率先升高后降低。氧化初期,氧化速率较高,但在氧化时间不断增加的过程中,3种合金的氧化速率都不断降低最后慢慢平稳,这说明在100 h时,钛铝合金的氧化过程已经趋于稳态氧化。氧化时间到达100 h之后,3种合金总增重分别为14.63 g·m‒2、7.02 g·m‒2、8.19 g·m‒2。在抗氧化性能级别评定方面,Ti‒45Al达到2级抗氧化级别,Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2合金均达到1级完全抗氧化级别。在整个氧化过程中,Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2合金的质量变化始终小于Ti‒45Al合金。样品的质量变化曲线近似于抛物线规律,说明氧化反应属于扩散控制。一般认为,金属或合金的高温氧化动力学是由阳离子或阴离子通过氧化膜扩散控制的[1718]。抛物线定律定义如式(1)所示。

    图  4  钛铝合金在800 ℃空气中氧化曲线:(a)单位面积质量变化;(b)氧化速率
    Figure  4.  Oxidation curves of the TiAl alloys at 800 ℃: (a) mass gain in unit area; (b) oxidation rate
    $$ \left( {{\Delta m / S}} \right)_{}^2 = {K_{\text{p}}}t + C $$ (1)

    式中:Δm是样品质量变化,g;S是面积,m2Kp是抛物线速率常数,g2·m‒4·h‒1t是氧化时间,h;C为常数[18]

    通过质量变化的平方作为时间的函数来分析样品在800 ℃氧化时的氧化动力学,如图5所示,其中R2是拟合系数,表示统计模型与数据结果的吻合程度。R2越大表示拟合结果与数据越一致。Ti‒45Al‒0.3Yb2O3在800 ℃时的氧化速率常数Kp最低,为0.54 g2·m‒4·h‒1

    图  5  钛铝合金800 ℃在空气中氧化动力学曲线:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2
    Figure  5.  Oxidation kinetics curves of the TiAl alloys oxidized at 800 ℃ in air: (a) Ti‒45Al; (b) Ti‒45Al‒0.3Yb2O3; (c) Ti‒45Al‒0.3CeO2

    通过图4图5观察到,钛铝合金在氧化过程中并不完全符合抛物线定律,而是在一定时间内(0~100 h)遵守抛物线定律。众所周知,抛物线定律是基于理想条件下氧化膜或氧化物/金属界面不存在缺陷的假设。事实上,在连续氧化过程中,氧化膜中可能会形成许多孔隙或裂纹,这会导致氧化动力学的偏差[19]

    图6为3种钛铝合金800 ℃高温氧化50 h后得到的氧化产物X射线衍射图谱。由图可知,Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2两种合金在高温氧化50 h后氧化产物相同,均为TiO2与Al2O3。图谱中并没有发现稀土衍射峰,这可能是由于稀土元素添加量较少。在800 ℃氧化50 h后,3种合金的主要氧化产物均为TiO2

    图  6  800 ℃氧化50 h钛铝合金氧化表面X射线衍射图谱
    Figure  6.  XRD patterns of the TiAl alloys surface oxidized at 800 ℃ for 50 h

    图7为3种合金在800 ℃高温下氧化100 h后的表面形貌。3种合金表面覆盖着不同尺寸的TiO2颗粒,TiO2颗粒皆具有粗晶柱状晶体的共同特征,而Al2O3颗粒为细晶且形状不规则。Ti‒45Al‒0.3Yb2O3表面形貌的特征是在较细的富Al氧化物鳞片上分布着一些特殊的小丘。图7中的高倍显微照片显示了小丘的细节,在添加稀土的条件下,由于Ti离子在Yb和Al氧化物中的溶解度有限,在丘顶形成了钛氧化物。此外,Ti‒45Al‒0.3Yb2O3表面氧化皮无明显脱落,Ti‒45Al‒0.3CeO2表面氧化皮有少量脱落,而Ti‒45Al合金等温氧化100 h后表面氧化皮发生了大面积脱落。3种氧化膜表面皆形成了TiO2型尖晶石,而Yb的添加明显抑制了氧化膜的生长,其表面氧化膜基本由突起的TiO2组成,还未形成一层完整的氧化膜。Ti‒45Al‒0.3CeO2和Ti‒45Al合金表面TiO2已经生长成为完整的一层,并且由于第二层混合氧化物疏松而发生不同程度的脱落。

    图  7  800 ℃氧化100 h后钛铝合金氧化层表面显微形貌:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2
    Figure  7.  Surface morphology of the TiAl alloys after oxidation at 800 ℃ for 100 h: (a)Ti‒45Al; (b)Ti‒45Al‒0.3Yb2O3; (c)Ti‒45Al‒0.3CeO2

    为了进一步了解氧化物的结构,采用扫描电镜观察氧化试样截面形貌并进行能谱(energy disperse spectroscope,EDS)分析,结果如图8所示。由图可知,氧化皮为典型的层状结构。Ti‒45Al‒0.3Yb2O3氧化膜无明显脱落,平均厚度约为7 μm;Ti‒45Al‒0.3CeO2表面氧化膜部分脱落,厚度约为12 μm;Ti‒45Al表面氧化膜大面积脱落,脱落后氧化膜厚度约为3 μm。如图8(a)所示,氧化膜开裂脱落后只剩下部分内部混合氧化物层。氧化皮的开裂主要发生在内部混合氧化层中,从而导致外层氧化皮的脱落。添加稀土元素钛铝合金生成的氧化物比Ti‒45Al的氧化物细得多,外层密实、无裂缝,混合内层结构疏松,这可能是多孔层在冷却过程中发生氧化膜剥离的原因。在添加稀土元素的合金中,形成更连续的Al2O3层,氧化膜中不存在较厚的混合氧化层。

    图  8  800 ℃氧化100 h后合金氧化层截面显微形貌和元素面分布能谱分析:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2;(d)能谱分析
    Figure  8.  Microstructure in the cross section and EDS analysis of the alloys after oxidation at 800 ℃ for 100 h: (a) Ti‒45Al; (b) Ti‒45Al‒0.3Yb2O3; (c) Ti‒45Al‒0.3CeO2; (d) EDS analysis

    研究表明,钛铝合金的氧化大致可分为4个阶段:第1阶段生成TiO2;第2阶段生成Al2O3层以及富Ti层;第3阶段生成TiO2层以及富Al层;第4阶段生成Al2O3[20]。阶段1的氧化受界面反应控制,阶段2和阶段3的氧化受离子通过氧化膜扩散控制。TiO2/Al2O3混合层的生长主要受氧气向内扩散控制,而TiO2混合层的生长主要受Ti离子向外扩散控制。本文实验材料Ti‒45Al中Ti含量比Al高,Ti活性比Al高,因此在高温氧化时会首先生成TiO2。然而,Ti‒45Al为双相组织,在合金表面Al、Ti的活性以及分布是变化的,难以形成连续大面积的TiO2氧化层。因为氧化速度比较慢,生成TiO2后导致基体一侧的氧化层富Al贫Ti现象相对较弱,最终生成了Al2O3和TiO2混合层,Ti和Al交替并互相促进地发生氧化,氧化层不断向基体方向生长。结合X射线衍射图谱可知,本文中3种合金的氧化层形成过程基本按照此4个阶段的顺序形成。

    (1)采用放电等离子烧结制备3种TiAl合金试样,样品的相对密度最高达到99%,实现致密化。

    (2)3种TiAl合金在高温空气中保温100 h的氧化动力学曲线均服从抛物线规律,在800 ℃空气中氧化100 h后,Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2三种合金的质量增重分别为14.63 g·m‒2、7.02 g·m‒2、8.19 g·m‒2,稀土元素Yb或Ce的加入提高了TiAl合金在800 ℃的抗高温氧化性能。

    (3)从氧化膜外表面到基体分别由TiO2层、Al2O3+TiO2混合层组成,添加Yb的钛铝合金氧化物尺寸更为细小,结构更为致密,稀土的添加促进了Al的选择性氧化,降低了氧化膜的生长速率,从而提高了TiAl合金的高温抗氧化性。

  • 图  1   斜面法粉末滑动摩擦系数测量装置示意图[25]

    Figure  1.   Schematic diagram of the measuring device for the sliding friction coefficient of powders[25]

    图  2   不同界面下小麦粉滑动摩擦角与粒径的变化曲线[25]

    Figure  2.   Variation curves of sliding friction angle and particle size between wheat flour and different interfaces[25]

    图  3   粉末摩擦系数倾斜仪[26]

    Figure  3.   Friction inclinometer of powder coefficient[26]

    图  4   动摩擦系数与细颗粒体积分数的关系[26]

    Figure  4.   Relationship between kinetic friction coefficient and fine particle volume fraction[26]

    图  5   平板法实验装置示意图[27]

    Figure  5.   Schematic diagram of plate method experimental device[27]

    图  6   玻璃颗粒与不同板件的最大摩擦力随法向载荷变化情况[27]:(a)PVC板-玻璃珠;(b)铝板-玻璃珠

    Figure  6.   Maximum frictional force between glass particles and different plates as a function of normal loads[27]: (a) PVC board-glass beads; (b) aluminum plate-glass beads

    图  7   平板法滑动摩擦系数示意图[42]

    Figure  7.   Schematic diagram of sliding friction coefficient by plate method[42]

    图  8   玻璃珠与不同界面间压力与滑动摩擦力关系曲线[42]

    Figure  8.   Variation curves between pressure and sliding friction between glass beads and different interfaces[42]

    图  9   卧式粉末摩擦系数测量装置[29]

    Figure  9.   Horizontal powder friction coefficient measuring device[29]

    图  10   不同粉末的摩擦系数随压力变化情况[30]

    Figure  10.   Curves of external friction coefficient for the different powders as a function of pressure[30]

    图  11   Solimanjad和Larsson摩擦系数测试装置[31]

    Figure  11.   Friction coefficient test device by Solimanjad and Larsson[31]

    图  12   不同压坯密度铁粉摩擦系数随时间变化曲线[31]

    Figure  12.   Variation curves of external friction coefficient for the iron powders with different compact density and time[31]

    图  13   剪切法测试原理示意图[17]

    Figure  13.   Schematic diagram of the shear method test principle[17]

    图  14   不同压强下铜基粉末的摩擦系数随时间变化曲线[32]

    Figure  14.   Variation curves of friction coefficient for the copper-based powders with time under different pressures[32]

    图  15   铁基粉末摩擦系数随时间的变化曲线[33]

    Figure  15.   Variation curves of friction coefficient for the iron-based powders with time[33]

    图  16   Cameron等采用的剪切摩擦系数测试装置[48]

    Figure  16.   Shear friction coefficient test device by Cameron[48]

    图  17   铁粉平均压实密度与摩擦系数的关系[48]

    Figure  17.   Relationship between the average compacted density of iron powders and friction coefficient[48]

    图  18   Korachkin等采用的摩擦系数测试装置[11]

    Figure  18.   Friction coefficient testing device by Korachkin[11]

    图  19   合金钢粉摩擦系数与压制时间的变化曲线[11]

    Figure  19.   Variation curve of the friction coefficient and pressing time for the alloy steel powders[11]

    图  20   氮化硅陶瓷和硬质合金粉末摩擦系数与冲头位移的变化曲线[12]

    Figure  20.   Variation curves of friction coefficient and punch displacement between the silicon nitride ceramic and cemented carbide powders[12]

    图  21   不同润滑剂下铁基粉末摩擦系数与压制时间的变化曲线[34]

    Figure  21.   Variation curve of friction coefficient and pressing time of iron based powder under different lubricants[34]

    图  22   不同润滑剂含量(质量分数)下铁基粉末压制时间与摩擦系数的变化曲线[35]:(a)干混;(b)湿混

    Figure  22.   Variation curves of pressing time and friction coefficient for the iron based powders with different lubricant content (mass fraction)[35]: (a) dry mixed; (b) wet mixed

    图  23   获取模壁摩擦力装置[40]:(a)压制阶段;(b)脱模阶段

    Figure  23.   Device of the die wall friction[40]: (a) suppression stage; (b) demoulding stage

    图  24   Wikman采用的闭模法摩擦系数测试装置[36]

    Figure  24.   Closed moldmethod friction coefficient testing device by Wikma[36]

    图  25   Guyoncourt采用的摩擦系数测试装置[37]

    Figure  25.   Friction coefficient test device by Guyoncourt[37]

    图  26   Lindskog采用的摩擦系数测量装置[50]

    Figure  26.   Friction coefficient measuring device by Lindskog[50]

    图  27   Tien采用的闭模法模壁摩擦力测试装置[51]

    Figure  27.   Closed mold method mold wall friction test device by Tien[51]

    图  28   铁粉相对密度与外摩擦系数的关系[36]

    Figure  28.   Relationship between the relative density of iron powders and the coefficient of external friction[36]

    图  29   不同压制速度下铝粉密度与外摩擦系数的关系[37]

    Figure  29.   Relationship between aluminum powder density and external friction coefficient at different pressing speeds[37]

    图  30   模壁摩擦力测量装置实物图

    Figure  30.   Physical drawing of the mould friction force measuring device

    图  31   试验时间与上下模冲压强的关系

    Figure  31.   Relationship between test time and punching strength of upper and lower dies

    图  32   不同H/D下摩擦系数与相对密度的关系[55]

    Figure  32.   Relationship between friction coefficient and relative density under the different H/D values[55]

    图  33   药粉压制过程摩擦系数测试示意图[39]

    Figure  33.   Schematic diagram of friction coefficient test during powder pressing process[39]

    图  34   上模冲速度与不同药粉的外摩擦系数变化曲线[39]

    Figure  34.   Variation curves of upper die punching speed and external friction coefficient of different powders[39]

    图  35   微晶纤维素的摩擦系数与径向力的变化曲线[60]

    Figure  35.   Change curve of friction coefficient and radial force of microcrystalline cellulose[60]

    图  36   闭模法摩擦系数测量装置[63]

    Figure  36.   Friction coefficient measuring device for closed mold method[63]

    图  37   不同粉末的壁面径向力随时间的变化曲线

    Figure  37.   Variation curves of wall radial force with time for the different powders

    表  1   常用的粉末外摩擦系数测试方法以及测试结果

    Table  1   External friction coefficient test methods and test results for the commonly used powders

    测试方法材料密度 / (g·cm−3)压强 / MPa压制力/重力外摩擦系数
    小载荷斜面法小麦粉[25]重力10.57~1.20
    石英砂[26]重力10.15~0.35
    平板法玻璃珠[27]0.600.01100.18~0.20
    大载荷旋转法胶粉[28]0.90~1.000.50~3.50140098000.20~0.80
    聚乙烯树脂[28]0.91~0.960.50~3.50140098000~0.12
    超高分子聚乙烯[29]0.94~0.960.50~3.50140098000.01~0.06
    滑石粉[29]2.70~2.800.50~3.50470~33000.30~0.90
    PP粉(聚丙烯)[30]0.910.50~3.50150098000.20~0.40
    PVC(聚氯乙烯)[30]1.380.50~3.50920~64000.20~0.50
    铁粉[31]5.00~6.2050~2001666600.40~0.80
    剪切法铜基粉末[32]255~4784444000.08~0.16
    铁基粉末[33]5.80~7.00200~700425000.10~0.45
    铁基粉末(加润滑剂)[34-35]6.95~7.036004239000.15~0.25
    闭模法铁粉[36]3.00~7.33450256600.20~1.00
    铝粉[37]3.80~7.006505100000.06~0.16
    水雾化铁粉(加润滑剂)[38]4.62~6.16200.15~0.25
    SDMan(喷雾干燥甘露醇)[39]150、2500.05~0.15
    CaSul(硫酸钙)[39]150、2500.05~0.15
    Glac(单水乳糖)[39]150、2500.05~0.15
    ACP(无水磷酸氢钙)[39]150、2500.05~0.10
    下载: 导出CSV
  • [1] 秦琴, 王禹峰. 超细粉末制备工艺的研究现状. 热加工工艺, 2018, 47(4): 47

    Qin Q, Wang Y F. Research status of preparation technology of ultrafine powder. Hot Working Technol, 2018, 47(4): 47

    [2] 方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望. 粉末冶金技术, 2020, 38(4): 313

    Fang X L, Zheng H J. Application and prospect of copper-based powder metallurgy friction materials. Powder Metall Technol, 2020, 38(4): 313

    [3] 陈梦婷, 石建军, 陈国平. 粉末冶金发展状况. 粉末冶金工业, 2017, 27(4): 66

    Chen M T, Shi J J, Chen G P. Development of powder metallurgy. Powder Metall Ind, 2017, 27(4): 66

    [4]

    Homayoun H, Shahbaz M, Ebrahimi R. Investigation of floating and single-action dies in producing dense compacts with high aspect ratio. Iran J Sci Technol Trans Mech Eng, 2020, 44: 1005 DOI: 10.1007/s40997-019-00301-3

    [5]

    Singh R, Sharma A K, Design and development of modified cold compaction die for fabrication of nickel-titanium composite. Mater Sci Eng, 2021, 1136(1): 012001

    [6] 茹铮, 余望, 阮熙寰, 等. 塑性加工摩擦学. 北京: 科学出版社, 1992

    Ru Z, Yu W, Ruan X H, et al. Tribology in Metalforming. Beijing: Science Press, 1992

    [7]

    Zhong W, Anastasiya Z, Zhang l, et al. Powder flow during linear and rotary die filling. Int J Pharm, 2021, 602: 120654 DOI: 10.1016/j.ijpharm.2021.120654

    [8] 温诗铸, 黄平. 摩擦学原理. 北京: 清华学出版社, 2002

    Wen S Z, Huang P. Principles of Tribology. Beijing: Tsinghua University Press, 2002

    [9] 赵振铎, 邵明志, 张如铎. 金属塑性成形中的摩擦与润滑. 北京: 化学工业出版社, 2004

    Zhao Z D, Shao M Z, Zhang R D. Friction and Lubrication in Metal Plastic Forming. Beijing: Chemical Industry Press, 2004

    [10] 肖志瑜, 李元元, 倪东惠. 粉末冶金温压的致密化机理. 粉末冶金材料科学与工程, 2006(2): 85

    Xiao Z Y, Li Y Y, Ni D H. Densification mechanism of warm compaction in powder metallurgy. Mater Sci Eng Powder Metall, 2006(2): 85

    [11]

    Korachkin D, Gethin D T, Lewis R W, et al. Friction measurement and lubrication in unloading and ejection stages in powder pressing cycle. Powder Metall, 2008, 51(1): 14 DOI: 10.1179/174329008X271646

    [12]

    Bonnefoy V, Doremus P, Puente G. Investigations on friction behaviour of treated and coated tools with poorly lubricated powder mixes. Powder Metall, 2003, 46(3): 224 DOI: 10.1179/003258903225005439

    [13]

    Simchi A, Veltl G. Behaviour of metal powders during cold and warm compaction. Powder Metall, 2006, 49(3): 281 DOI: 10.1179/174329006X110844

    [14]

    Vié T, Harthong B, Imbault D, et al. On the lubricating efficiency of high-performance powder metallurgy lubricants. Powder Technol, 2022: 118019

    [15]

    Sinka I C, Cunningham J C, Zavaliangos A. Experimental characterization and numerical simulation of die wall friction in pharmaceutical powder compaction. Adv Powder Metall Part Mater, 2001(1): 1

    [16] 杨作梅, 郭玉明, 崔清亮, 等. 谷子摩擦特性试验及其影响因素分析. 农业工程学报, 2016, 32(16): 258

    Yang Z M, Guo Y M, Cui Q L, et al. Test and influence factors analysis of friction characteristics of millet. Trans Chin Soc Agric Eng, 2016, 32(16): 258

    [17] 刘永强, 贾明印, 薛平, 等. 聚合物摩擦因数测试技术研究进展. 塑料工业, 2020, 48(S1): 6

    Liu Y Q, Jia M Y, Xue P, et al. Research progress on polymer friction coefficient testing technology. China Plast Ind, 2020, 48(S1): 6

    [18] 侯成龙, 郭俊卿, 陈拂晓, 等. 金属粉末注射成形技术及其数值模拟. 粉末冶金技术, 2022, 40(1): 72

    Hou C L, Guo J Q, Chen F X, et al. Metal powder injection molding technology and numerical simulation. Powder Metall Technol, 2022, 40(1): 72

    [19] 王德广, 吴玉程, 焦明华, 等. 粉末成形过程中摩擦行为研究进展. 机械工程学报, 2009, 45(5): 12 DOI: 10.3901/JME.2009.05.012

    Wang D G, Wu Y C, Jiao M H, et al. Research progress of friction behavior during powder forming. J Mech Eng, 2009, 45(5): 12 DOI: 10.3901/JME.2009.05.012

    [20] 温诗铸. 我国摩擦学研究的现状与发展. 机械工程学报, 2004, 40(11): 1 DOI: 10.3901/JME.2004.11.001

    Wen S Z. Existing state and development of tribology research in China. Chin J Mech Eng, 2004, 40(11): 1 DOI: 10.3901/JME.2004.11.001

    [21]

    Güner F, Cora Ö N, Sofuoğlu H. Effects of friction models on the compaction behavior of copper powder. Tribol Int, 2018, 122: 125 DOI: 10.1016/j.triboint.2018.02.022

    [22] 孟凡净, 刘华博, 花少震, 等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析. 应用力学学报, 2021, 38(3): 1286

    Meng F J, Liu H B, Hua S Z, et al. Analysis of frictional mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing. Chin J Appl Mech, 2021, 38(3): 1286

    [23]

    Zhang H Z, Zhang L, Dong G Q, et al. Effects of annealing on high velocity compaction behavior and mechanical properties of iron-base PM alloy. Powder Technol, 2016, 288: 435 DOI: 10.1016/j.powtec.2015.10.040

    [24]

    Zhang W, Liu K, Zhou J, et al. Experimental investigation on stress and die-wall frictional characteristics of metal powder during high-velocity compaction. Mater Technol, 2021, 55(2): 163

    [25] 彭飞, 杨洁, 王红英, 等. 小麦粉摩擦特性的试验研究. 中国粮油学报, 2015, 30(8): 7

    Peng F, Yang J, Wang H Y, et al. Experimental research on friction characteristics of wheat meal. J Chin Cereal Oils Assoc, 2015, 30(8): 7

    [26] 刘宏伟, 杨情情, 苏志满. 颗粒材料底面动摩擦系数特征研究. 工程地质学报, 2020, 28(4): 740

    Liu H W, Yang Q Q, Su Z M. Characteristics of dynamic basal friction coefficient of bidisperse granular materials. J Eng Geol, 2020, 28(4): 740

    [27] 彭政, 王璐珠, 蒋亦民. 颗粒物质与固体交界面静摩擦系数的测量与分析. 山东大学学报(理学版), 2011, 46(1): 42

    Peng Z, Wang L Z, Jiang Y M. Measurement and analysis of static friction coefficient on a granular-solid interface. J Shandong Univ Nat Sci, 2011, 46(1): 42

    [28] 胡学永. 粉末材料动摩擦系数的实验研究[学位论文]. 北京: 北京化工大学, 2013

    Hu X Y. Experimental Study on the Kinetic Frictional Coefficient for Powder Materials [Dissertation]. Beijing: Beijing University of Chemical Technology, 2013

    [29] 杨彩霞. 粉末物料动摩擦系数的测试装置设计及其实验分析[学位论文]. 北京: 北京化工大学, 2012

    Yang C X. Testing Device Design and Experimental Study of Friction Coefficient of Power Materials [Dissertation]. Beijing: Beijing University of Chemical Technology, 2012

    [30] 张志广. 粉末材料动摩擦系数立式测定装置的设计及实验研究[学位论文]. 北京: 北京化工大学, 2015

    Zhang Z G. The Design of Vertical Measuring Device and Experimental Study of Dynamic Friction Coefficient of Powder Materials [Dissertation]. Beijing: Beijing University of Chemical Technology, 2015

    [31]

    Solimanjad N, Larsson R. Die wall friction and influence of some process parameters on friction in iron powder compaction. Mater Sci Technol, 2003, 19(12): 1777 DOI: 10.1179/026708303225009517

    [32] 蒋卿. 铜基粉末压制成形过程的数值模拟与实验研究[学位论文]. 合肥: 合肥工业大学, 2010

    Jiang Q. Numerical Simulation and Experiment Research of Copper-Based Powder Compacting Process [Dissertation]. Hefei: Hefei University of Technology, 2010

    [33] 谷曼, 焦明华, 孙龙, 等. 粉末压制过程中的摩擦行为研究. 热加工工艺, 2014, 43(9): 109

    Gu M, Jiao M H, Sun L, et al. Research on friction behavior in powder compaction process. Hot Working Technol, 2014, 43(9): 109

    [34]

    Chen W C, Cheng J G, Cheng L, et al. Improving the homogeneity and properties of ferrous powder mixes by a novel powder mixing process. Powder Metall, 2019, 62(2): 74 DOI: 10.1080/00325899.2019.1582830

    [35]

    Chen W C, Wang J H, Wang S P, et al. On the processing properties and friction behaviours during compaction of powder mixtures. Mater Sci Technol, 2020, 36(10): 1057 DOI: 10.1080/02670836.2020.1747779

    [36]

    Wikman B, Solimannezhad N, Larsson R, et al. Wall friction coefficient estimation through modelling of powder die pressing experiment. Powder Metall, 2000, 43(2): 132 DOI: 10.1179/003258900665880

    [37]

    Guyoncourt D M M, Tweed J H, Gough A, et al. Constitutive data and friction measurements of powders using instrumented die. Powder Metall, 2001, 44(1): 25 DOI: 10.1179/003258901666130

    [38]

    Cristofolini I, Molinari A, Pederzini G, et al. From experimental data, the mechanics relationships describing the behaviour of four different low alloyed steel powders during uniaxial cold compaction. Powder Metall, 2018, 61(1): 10 DOI: 10.1080/00325899.2017.1361507

    [39]

    Desbois L, Tchoreloff P, Mazel V. Influence of the punch speed on the die wall/powder kinematic friction during tableting. J Pharm Sci, 2019, 108(10): 3359 DOI: 10.1016/j.xphs.2019.05.007

    [40] 钟文镇. 获取颗粒材料压制力和模壁摩擦力的实验装置及实验方法: 中国专利, 201510673518.6, 2015-12-09

    Zhong W Z. Experimental Device and Experimental Method for Acquising: China Patent, 201510673518.6, 2015-12-09

    [41] 石欣琳, 钟文镇, 陈超, 等. 用于测量微小变形的粉末颗粒与模具壁摩擦系数的装置: 中国专利, 202020807060.5, 2021-01-05

    Shi X L, Zhong W Z, Chen C, et al. Apparatus for Measuring Minor Deformed Powder Particles to Die Wall Coefficient of Friction: China Patent, 202020807060.5, 2021-01-05

    [42]

    Tang H, Song R, Dong Y, et al. Measurement of restitution and friction coefficients for granular particles and discrete element simulation for the tests of glass beads. Materials, 2019, 12(19): 3170 DOI: 10.3390/ma12193170

    [43]

    Solimanjad N. New method for measuring and characterization of friction coefficient at wide range of densities in metal powder compaction. Powder Metall, 2003, 46(1): 49 DOI: 10.1179/003258903225010488

    [44]

    Larsson S H. Kinematic wall friction properties of reed canary grass powder at high and low normal stresses. Powder Technol, 2010, 198(1): 108 DOI: 10.1016/j.powtec.2009.10.022

    [45]

    King H M. Mechanical basis for certain familiar geologic structures. Geol Soc Am Bull, 1951, 62(4): 355 DOI: 10.1130/0016-7606(1951)62[355:MBFCFG]2.0.CO;2

    [46]

    Krantz R W. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. Tectonophysics, 1991, 188(1-2): 203 DOI: 10.1016/0040-1951(91)90323-K

    [47] 苗立荣. 螺旋沟槽衬套单螺杆挤出机固体输送段的研究[学位论文]. 北京: 北京化工大学, 2011

    Miao L R. Study on Solid Conveying Section in Helically Grooved Feed Single-Screw Extruder [Dissertation]. Beijing: Beijing University of Chemical Technology, 2011

    [48]

    Cameron I M, Gethin D T, Tweed J H. Friction measurement in powder die compaction by shear plate technique. Powder Metall, 2002, 45(4): 345 DOI: 10.1179/003258902225007069

    [49]

    Kim K T, Lee H T. Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing. Int J Mech Sci, 1998, 40(6): 507 DOI: 10.1016/S0020-7403(97)00063-5

    [50]

    Lindskog P, Andersson D C, Larsson P L. An experimental device for material characterization of powder materials. J Test Eval, 2013, 41(3): 504 DOI: 10.1520/JTE20120107

    [51]

    Tien Y M, Wu P L, Huang W H, et al. Wall friction measurement and compaction characteristics of bentonite powders. Powder Technol, 2007, 173(2): 140 DOI: 10.1016/j.powtec.2006.11.023

    [52]

    Shang C, Sinka I C, Pan J. Constitutive model calibration for powder compaction using instrumented die testing. Expe Mech, 2012, 52: 903 DOI: 10.1007/s11340-011-9542-8

    [53]

    Salmi K, Staf H, Larsson P L. On the relation between pressing energy and green strength at compaction of hard metal powders. J Mater Eng Perform, 2021, 30(4): 2545 DOI: 10.1007/s11665-021-05588-5

    [54]

    Cristofolini I, Molinari A, Pederzini G, et al. Study of the uniaxial cold compaction of AISI 316L stainless steel powders through single action tests. Powder Technol, 2016, 295: 284 DOI: 10.1016/j.powtec.2016.03.045

    [55]

    Cristofolini I, Pederzini G, Rambelli A, et al. Densification and deformation during uniaxial cold compaction of stainless steel powder with different particle size. Powder Metall, 2016, 59(1): 73 DOI: 10.1080/00325899.2015.1114747

    [56]

    Cristofolini I, Molinari A, Pederzini G, et al. The behaviour of low alloy steel powder during uniaxial cold compaction—influence of the geometry. J Jpn Soc Powder Powder Metall, 2019, 66(1): 3 DOI: 10.2497/jjspm.66.3

    [57]

    Nicewicz P, Sano T, Hogan J D. Confined uniaxial compression of granular stainless steel 316. Powder Technol, 2019, 353: 489 DOI: 10.1016/j.powtec.2019.05.041

    [58]

    Sinka I C, Cunningham J C, Zavaliangos A. The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker-Prager Cap model. Powder Technol, 2003, 133(1-3): 33 DOI: 10.1016/S0032-5910(03)00094-9

    [59]

    Shi X, Zhong W, Zhao Q, et al. Investigation of damping coefficients for elastic collision particles utilizing the acoustic frequency sampling method. Sci Rep, 2024, 14(1): 9060 DOI: 10.1038/s41598-024-57487-z

    [60]

    Aruffo G A, Michrafy M, Oulahna D, et al. Modelling powder compaction with consideration of a deep grooved punch. Powder Technol, 2022, 395: 681 DOI: 10.1016/j.powtec.2021.10.012

    [61] 钟文镇, 何克晶, 周照耀, 等. 粉末材料堆积的物理模型与仿真系统. 物理学报, 2009, 58(13): 21 DOI: 10.7498/aps.58.21

    Zhong W Z, He K J, Zhou Z Y, et al. Physical model and simulation system of powder packing. Acta Phys Sin, 2009, 58(13): 21 DOI: 10.7498/aps.58.21

    [62] 钟文镇, 何克晶, 周照耀, 等. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155 DOI: 10.7498/aps.58.5155

    Zhong W Z, He K J, Zhou Z Y, et al. Calibration of damping coefficient in discrete element method simulation. Acta Phys Sin, 2009, 58(8): 5155 DOI: 10.7498/aps.58.5155

    [63] 钟文镇, 陈超, 石欣琳, 等. 粉末滑动摩擦系数获取方法及装置: 中国专利, 202010409026.7, 2020-10-02

    Zhong W Z, Chen C, Shi X L, et al. Powder Sliding Coefficient of Friction Acquisition Method and Apparatus: China Patent, 202010409026.7, 2020-10-02

图(37)  /  表(1)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  1004
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 网络出版日期:  2022-12-20
  • 刊出日期:  2024-08-27

目录

/

返回文章
返回