高级检索

氩气雾化镍基粉末高温合金及粉末特性研究进展

张强, 郑亮, 许文勇, 李周, 张国庆, 谢建新

张强, 郑亮, 许文勇, 李周, 张国庆, 谢建新. 氩气雾化镍基粉末高温合金及粉末特性研究进展[J]. 粉末冶金技术, 2022, 40(5): 387-400. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050016
引用本文: 张强, 郑亮, 许文勇, 李周, 张国庆, 谢建新. 氩气雾化镍基粉末高温合金及粉末特性研究进展[J]. 粉末冶金技术, 2022, 40(5): 387-400. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050016
ZHANG Qiang, ZHENG Liang, XU Wen-yong, LI Zhou, ZHANG Guo-qing, XIE Jian-xin. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050016
Citation: ZHANG Qiang, ZHENG Liang, XU Wen-yong, LI Zhou, ZHANG Guo-qing, XIE Jian-xin. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050016

氩气雾化镍基粉末高温合金及粉末特性研究进展

基金项目: 国家自然科学基金资助项目(52071310,52127802);重点实验室基金资助项目(6142903200303,6142903220302);国家科技重大专项资助项目(Y2019-VII-0010-0151)
详细信息
    通讯作者:

    E-mail: zhangqiang0_2019@163.com (张强)

    liang.zheng@biam.ac.cn (郑亮)

    g.zhang@126.com (张国庆)

  • 中图分类号: TF123; TG146.1+5

Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics

More Information
  • 摘要:

    概述了国内外镍基粉末高温合金的发展、氩气雾化制粉技术的特点、氩气雾化镍基高温合金粉末的特性和增材制造用镍基高温合金粉末的发展方向,重点介绍了镍基高温合金粉末的形貌与粒度控制、氧化特性、气体脱附行为和缺陷形成及控制措施。讨论了镍基高温合金粉末特性与合金缺陷之间的内在关系,总结了缺陷消除措施的研究进展,明确了未来粉末涡轮盘用氩气雾化镍基高温合金粉末质量优化的发展方向,并对高品质氩气雾化镍基高温合金粉末促进增材制造技术在航空航天领域的应用进行了展望。

    Abstract:

    The development of nickel-based powder metallurgy (PM) superalloy, the technical features of argon atomized (AA) powder manufacturing, the characteristics of AA nickel-based superalloy powders, and the development direction of nickel-based superalloy powders for additive manufacturing (AM) were summarized in this paper. Meanwhile, the powder morphology, particle size control, oxidation characteristics, degassing behavior, and formation and control of defects for the nickel-based superalloy powders were mainly emphasized. The internal relationship between the powder characteristics and alloy defects was discussed, the research progress of the defect elimination measures was analyzed, and the quality optimization future of nickel-based superalloy powders used for the turbine disk was clarified. Moreover, the application of high-quality AA nickel-based superalloy powders to promote the AM technology in the aerospace field was prospected.

  • 碳化钛(TiC)具有高硬度、高熔点、导电性好、耐腐蚀、抗高温等优点,被广泛应用于工业工程、航空航天、核工业等领域[13]。由于TiC具有强的共价键,烧结性较差,影响了TiC陶瓷的力学性能,并限制了TiC陶瓷的应用[4]。通常,通过添加第二相(WC、ZrC、SiC、TiN等)以及金属相(Ti、Mo、Co、Ni、Cr等)改善TiC陶瓷的烧结性,提高陶瓷力学性能[57]。氮化钛(TiN)具有硬度高、熔点高、化学稳定性好、摩擦系数低、导电性能好、颜色独特且可变等特点,被广泛应用于机械工业、生物医疗、导电材料等领域[8]。在一定条件下,TiN可与TiC形成TiCxNy固溶体,TiCxNy固溶体的韧性和化学稳定性优于TiC,硬度和耐磨性优于TiN,故将两者复合形成固溶体,可兼容TiC和TiN的优势[910]。此外,WC、HfN与TiC、TiN或TiCN有较好的物理化学相容性[1112],它们是TiC、TiN或TiCN陶瓷材料的理想增强相。金属相不仅可改善TiC、TiN陶瓷材料的微观组织,还可提高材料的力学性能。金属Ni对TiC和TiB2陶瓷材料有较好的润湿性,随着Ni含量的增加,TiC–TiB2材料的硬度、抗弯强度和断裂韧度均有所提高[13];适量的Mo能够细化TiC–TiN–WC陶瓷材料的晶粒且能提高陶瓷的抗弯强度[9];Ti作为TiC陶瓷材料的粘结剂,可以使材料获得高的相对密度[14]。金属Re是一种熔点高、稳定性好的金属,也是陶瓷材料的理想添加剂。Zi等[15]发现Re可改善Ni与Al2O3陶瓷间的润湿性。Marcin和Anna[16]发现在Cr–Al2O3复合材料中加入Re可提高材料的摩擦磨损性能。但是,目前有关Re对TiC、TiN、TiCN陶瓷材料性能影响方面的报道较少。

    本研究以TiC和TiN为基体,以WC和HfN为增强相,以Ni和Re为金属相,通过热压烧结技术制备TiCN–WC–HfN陶瓷,研究Re含量(摩尔分数)对材料微观组织和力学性能的影响。

    制备TiCN–WC–HfN陶瓷所用TiC、TiN、WC、HfN、Ni、Re粉末均来自上海允复纳米科技有限公司,粉末平均粒径均为0.5 μm,纯度均大于99%,具体组分及含量见表1

    表  1  TiCN–WC–HfN陶瓷组分及含量(摩尔分数)
    Table  1.  Composition and content of the TiCN–WC–HfN ceramics %
    材料编号TiCTiNWCHfNNiRe
    R03030151510.00
    R1303015158.02.0
    R2303015157.52.5
    R3303015157.03.0
    下载: 导出CSV 
    | 显示表格

    根据表1称量原料粉末,置于球磨罐中进行球磨,球磨介质为硬质合金球和无水乙醇,球磨时间72 h。将球磨后的浆料置入干燥箱中干燥。随后,用100目的网筛过筛,倒入直径为50 mm的石墨模具中,完成素坯的制备。使用ZT-40-20型真空热压烧结炉烧结素坯,其中烧结温度为1550 ℃,保温时间为60 min,升温速率为10 ℃·min−1,烧结压力为30 MPa。烧结后的材料经切割、粗磨、细磨、抛光等工艺制成3 mm×4 mm×40 mm的试样条。

    依据GB/T6569-2006[17]采用三点抗弯法在CREE-8003G材料试验机上测试材料的抗弯强度,其跨距为30 mm,加载速度为0.5 mm·min−1。依据GB/T16534-2009[18]在HVS-30硬度计上测试材料的维氏硬度,加载载荷196 N,保压15 s。采用压痕法[19]测试材料的断裂韧度。力学性能的测试均以15个测试结果的算术平均值作为测试结果。使用RAY-10AX-X-ray型X射线衍射仪(X-ray diffraction,XRD)和能谱仪(energy disperse spectroscope,EDS)分析材料的物相组成,并通过Supra-55型扫描电镜(scanning electron microscope,SEM)观察材料的抛光面和断口形貌。

    图1是所制备TiCN–WC–HfN(R3)陶瓷的X射线衍射图谱。由图1可见,陶瓷试样的主要相为TiC0.41N0.50、WC、HfN和TiC,同时,含有少量的Ni和Re。图谱中未发现TiN,而有大量TiC0.41N0.50固溶体和一定量TiC,这表明在热压烧结过程中,几乎所有TiN与大部分TiC发生了固溶,形成了TiC0.41N0.50固溶体。Verma等[20]在研究TiCN基陶瓷材料时发现了少量(Ti,W)(C,N)固溶体,但在本研究的X射线衍射图谱中并未发现,可能是其含量较少,无法被检测到。

    图  1  TiCN–WC–HfN(R3)陶瓷X射线衍射图谱
    Figure  1.  XRD patterns of the TiCN–WC–HfN (R3) ceramics

    图2是TiCN–WC–HfN陶瓷的抛光面形貌及相组成。由图2(a)可见,材料由黑色相、白色相、浅灰色相和深灰色相组成。由图2(b)可见,深灰色相所占面积最大,其次依次为浅灰色、白色相和黑色相。图3是各相的能谱分析。由图3(a)可见,黑色相中的C和Ti元素含量较高,其中C的原子数分数为42.88%,Ti的原子数分数为42.40%,其比接近1:1,结合X射线衍射图谱分析可知,黑色相的主要成分是TiC。同理,由图3(b)可见,白色相中N和Hf元素含量较高,其中N的原子数分数为43.09%,Hf的原子数分数为41.52%,其比接近1:1,结合X射线衍射图谱结果可知,白色相的主要成分是HfN。由图3(c)可见,浅灰色相中C和W元素含量较高,其原子数分数分别为47.31.%和44.92%,其比接近1:1,结合X射线衍射图谱分析可知,浅灰色相的主要成分是WC。浅灰色相的边界较为平直,晶粒形貌近似四边形,这与杨方等[21]所报道的WC形貌基本一致。由图3(d)可见,深灰色相中Ti、C和N原子含量较高,其原子数分数分别为48.41%、19.27%和25.06%,其比接近1.0:0.4:0.5,结合X射线衍射图谱分析可知,深灰色相的主要成分是TiC0.41N0.50。此外,陶瓷相在液相金属Ni和Re中完成溶解–析出–结晶后,Ni和Re会粘附在晶粒周围;同时,在烧结压力的作用下,液相金属Ni和Re会填充到晶粒间的空隙中;Ni和Re在黑色相、白色相、浅灰色相和深灰色相的能谱中均有体现,但其含量相对较低。

    图  2  TiCN–WC–HfN陶瓷显微形貌(a)及相组成(b)
    Figure  2.  Microstructure (a) and phase composition (b) of the TiCN–WC–HfN ceramics
    图  3  TiCN–WC–HfN陶瓷各相能谱分析:(a)黑色相;(b)白色相;(c)浅灰色相;(d)深灰色相
    Figure  3.  EDS analysis of the TiCN–WC–HfN ceramics: (a) black phase; (b) white phase; (c) light gray phase; (d) gray phase

    图4是TiCN–WC–HfN陶瓷的断口形貌。由图可见,随着Re摩尔分数从0增到3.0%,晶粒呈先变大后变小的趋势,甚至发生了晶粒聚集,如图中虚线框所示,这表明Re在一定程度上具有抑制晶粒长大的作用。同时,在试样R0~试样R3中均存在凹坑,如图中实线圆圈所示,且试样R2中的凹坑最多。这些凹坑是由材料中小晶粒拔出所致(如图中箭头所示);在材料的断裂过程中,这些小晶粒可起到钉扎作用,这有利于材料力学性能的提高。另外,试样中均存在解理面(如图中实线框所示),试样R0中的解理面相对较少,晶粒断面相对平整;而试样R1~试样R3中的解理面较多,这表明晶粒断裂时非一次性直接断裂,而是在外力的作用下逐渐断裂,这种断裂会消耗更多的断裂能,有利于材料抗弯强度和断裂韧度的提高。试样R0和试样R3存在晶粒聚集现象,其中试样R3中的晶粒发生了严重聚集,这会削弱材料的力学性能。

    图  4  TiCN–WC–HfN陶瓷断口形貌:(a)R0;(b)R1;(c)R2;(d)R3
    Figure  4.  Fracture morphologies of the TiCN–WC–HfN ceramics: (a) R0; (b) R1; (c) R2; (d) R3

    图5是Re含量(摩尔分数)对TiCN–WC–HfN陶瓷力学性能的影响。由图可见,当Re的摩尔分数由0增到3.0%时,材料的硬度、抗弯强度和断裂韧度均先增大后减小;当Re的摩尔分数为2.5%时,材料的力学性能最优,其维氏硬度为(19.25±0.21) GPa、抗弯强度为(1304±23) MPa、断裂韧度为(7.73±0.22) MPa∙m1/2;而当Re摩尔分数为0时,材料的力学性能分别为(18.04±0.18) GPa、(1021±19) MPa和(7.11±0.19) MPa∙m1/2。当Re摩尔分数为2.5%时,材料在断裂过程中,其断口上较多的小晶粒被拔出形成凹坑,以及晶粒在断裂过程中形成解离面都需要消耗大量的断裂能,这是其力学性能较高的主要原因。当Re摩尔分数为3.0%时,材料的抗弯强度和维氏硬度发生了较大幅度的降低,这是由晶粒的严重聚集造成的。

    图  5  Re含量对TiCN–WC–HfN陶瓷力学性能的影响
    Figure  5.  Relationship between the Re content and mechanical properties of the TiCN–WC–HfN ceramics

    图6为TiCN–WC–HfN(R3)陶瓷的裂纹扩展路径。由图可见,裂纹扩展时发生了偏转和桥连。裂纹偏转和裂纹桥连会消耗更多的断裂能,这有利于材料断裂韧度的提高[22]。此外,在裂纹扩展时,存在沿晶扩展和穿晶扩展,即材料在断裂时发生了沿晶断裂和穿晶断裂,这种沿晶与穿晶并存的断裂方式也有助于材料断裂韧度的提高[23]

    图  6  TiCN–WC–HfN(R3)陶瓷裂纹扩展路径
    Figure  6.  Crack propagation of the TiCN–WC–HfN (R3) ceramics

    (1)烧结后的TiCN–WC–HfN–Ni–Re陶瓷材料由TiC0.41N0.50、WC、HfN、TiC、Ni和Re组成,其中TiC0.41N0.50是TiC与TiN在烧结过程中生成的固溶体。

    (2)在TiCN–WC–HfN陶瓷的断口上存在凹坑和解理面。当Re摩尔分数为0时,其断口上的解理面相对较少,晶粒的断面相对平整;当Re摩尔分数为2.5%时,材料断口上的凹坑较多;当Re摩尔分数为0和3.0%时,材料断口上存在晶粒聚集的现象。

    (3)当Re摩尔分数由0增到3.0%时,材料的硬度、抗弯强度和断裂韧度均先增大后减小。当Re摩尔分数为2.5%时,材料的力学性能最优,其维氏硬度为(19.25±0.21) GPa、抗弯强度为(1304±23) MPa、断裂韧度为(7.73±0.22) MPa∙m1/2。材料在断裂过程中存在穿晶断裂和沿晶断裂,裂纹发生了偏转和桥连。

  • 图  1   镍基粉末高温合金发展历史[1]

    Figure  1.   Development of the nickel-based powder metallurgy superalloys[1]

    图  2   四代镍基粉末高温合金性能对比[10]

    Figure  2.   Comprehensive properties of the four generation nickel-based powder metallurgy superalloys[10]

    图  3   真空感应熔炼气雾化法制粉原理图[1]

    Figure  3.   Schematic of VIGA powder production[1]

    图  4   电极感应熔炼气雾化法制粉原理图[21]

    Figure  4.   Schematic of EIGA powder production[21]

    图  5   不同尺寸氩气雾化FGH96粉末的表面和内部凝固组织:(a)表面组织,104~147 μm;(b)表面组织,61~104 μm;(c)表面组织,38~61 μm;(d)表面组织,<38 μm;(e)内部组织,104~147 μm;(f)内部组织,61~104 μm;(g)内部组织,38~61 μm;(h)内部组织,<38 μm[23]

    Figure  5.   Surface and interior microstructures of the argon atomized FGH96 powders with the different particle sizes: (a) surface microstructures, 104~147 μm; (b) surface microstructures, 61~104 μm; (c) surface microstructures, 38~61 μm; (d) surface microstructures, <38 μm; (e) interior microstructures, 104~147 μm; (f) interior microstructures, 61~104 μm; (g) interior microstructures, 38~61 μm; (h) interior microstructures, <38 μm[23]

    图  6   存储条件对镍基粉末高温合金粉末表面状态及热变形行为的影响[29]

    Figure  6.   Influence of storage conditions on the powder surface state and hot deformation behavior of PM nickel-based superalloys[29]

    图  7   FGH96高温合金粉末表面氧化层分布[30]:(a)表面氧化层纳米束电子衍射图谱;(b)表面氧化层高角环形暗场扫描透射显微形貌;(c)Ni、O、Ti、Cr、Co和Al能谱分析

    Figure  7.   Surface oxide layer distribution of the FGH96 superalloy powders[30]: (a) nano-beam electron diffraction patterns of the surface layer regions; (b) high angle annular dark field-scanning transmission electron microscope image of the surface oxide layers; (c) the corresponding energy disperse spectroscope maps of Ni, O, Ti, Cr, Co, and Al

    图  8   合金成分和粒度对镍基高温合金粉末气体脱附行为的影响:(a)氢气脱附;(b)水蒸气脱附;(c)氧气脱附;(d)二氧化碳脱附;(e)一氧化碳脱附[30]

    Figure  8.   Effects of the composition and particle size on the degassing behavior of nickel-based superalloy powders: (a) H2 degassing; (b) H2O degassing; (c) O2 degassing; (d) CO2 degassing; (e) CO degassing[30]

    图  9   空心粉形成机理示意图[42]:(a)熔融液滴破碎;(b)单个气孔空心粉;(c)多个气孔空心粉;(d)开孔空心粉

    Figure  9.   Schematic of the hollow powder formation mechanism[42]: (a) droplet split; (b) single bubble; (c) multi bubble; (d) open hollow powder

    图  10   袋式破碎机制形成空心粉[45]:(a)~(e)空心粉形成过程;(f)空心粉微观形貌

    Figure  10.   Evolution of the hollow powders formed by bag breakup mechanism[45]: (a)~(e) hollow powder formation process; (f) hollow powder in optical microscope

    图  11   卫星粉的形成过程[45]:(a)液滴破碎;(b)卫星粉形成;(c)不同X点液滴速率;(d)卫星粉微观形貌

    Figure  11.   Evolution of satellite powders [45]: (a) droplet breakup; (b) satellite powder formation; (c) velocity of droplet in different X positions (Y=60 mm); (d) satellite powder in optical microscope

    图  12   热等静压态FGH96高温合金中原始颗粒边界缺陷的组成[48]:(a)原始颗粒边界缺陷;(b)原始颗粒边界缺陷各种析出相分布;(c)γ′相选区电子衍射斑;(d)MC型碳化物选区电子衍射斑;(e)ZrO2选区电子衍射斑;(f)Al2O3选区电子衍射斑

    Figure  12.   Composition of the PPBs defects in HIPed FGH96 superalloys[48]: (a) PPBs; (b) precipitation phase distribution in PPBs; (c) selected area electron diffraction (SAED) patterns of γ′ phase; (d) SAED patterns of MC-type carbides; (e) SAED patterns of ZrO2; (f) SAED patterns of Al2O3

    表  1   国外典型镍基粉末高温合金特性[89]

    Table  1   Characteristics of the typical nickel-based powder metallurgy superalloys[89]

    代次合金牌号国家γ′相质量分数 / %γ′相完全溶解温度 / ℃密度 / (g·cm‒3)
    第一代René95美国5011608.26
    IN100美国6111857.90
    MERL76美国6411907.95
    APK-1美国4511458.02
    эп741нп俄罗斯6011808.35
    第二代René88DT美国4211308.36
    N18法国5511908.00
    U720Li美国3711508.10
    第三代LSHR美国6011608.29
    RR1000英国4611608.14
    Alloy10美国5511808.41
    NR3法国5312058.05
    René104/ME3美国5111608.30
    第四代ME501美国5511828.15
    V202KHN2
    (Alloy A)
    英国4911408.25
    V202KHN2+Nb
    (Alloy B)
    英国5011508.30
    下载: 导出CSV

    表  2   国内典型镍基粉末高温合金特性[1314]

    Table  2   Characteristics of the typical domestic nickel-based powder metallurgy superalloys[1314]

    代次合金牌号γ′相含量 / %γ′相完全溶解温度 / ℃密度 / (g·cm‒3)
    第一代FGH955011608.28
    FGH976211858.30
    第二代FGH963611308.32
    第三代FGH985011608.26
    FGH100L5311708.25
    下载: 导出CSV
  • [1] 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application. Acta Metall Sin, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    [2] 师昌绪, 仲增墉. 我国高温合金的发展与创新. 金属学报, 2010, 46(11): 1281

    Shi C X, Zhong Z Y. Development and innovation of superalloy in China. Acta Metall Sin, 2010, 46(11): 1281

    [3]

    Reed R C. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2008

    [4] 曲选辉, 张国庆, 章林. 粉末冶金技术在航空发动机中的应用. 航空材料学报, 2014, 34(1): 1

    Qu X H, Zhang G Q, Zhang L. Applications of powder metallurgy technologies in aero-engines. J Aeron Mater, 2014, 34(1): 1

    [5]

    Zheng B L, Ashford D, Zhou Y Z, et al. Influence of mechanically milled powder and high pressure on spark plasma sintering of Mg–Cu–Gd metallic glasses. Acta Mater, 2013, 61(12): 4414 DOI: 10.1016/j.actamat.2013.04.011

    [6]

    Dai D H, Gu D D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tools Manuf, 2016, 100: 14 DOI: 10.1016/j.ijmachtools.2015.10.004

    [7]

    Whitman C A, O’ flynn J T, Rayner A J, et al. Determining the oxidation behavior of metal powders during heating through thermogravimetric and evolved gas analysis using a coupled thermogravimetry-gas chromatography-mass spectrometry technique. Thermochimica Acta, 2016, 638: 124 DOI: 10.1016/j.tca.2016.06.019

    [8] 张义文, 刘建涛, 贾建, 等. 欧美第四代粉末高温合金研究进展. 粉末冶金工业, 2022, 32(1): 1 DOI: 10.13228/j.boyuan.issn1006-6543.20210105

    Zhang Y W, Liu J T, Jia J, et al. Recent development of fourth generation powder metallurgy superalloys in America and Europe. Powder Metall Ind, 2022, 32(1): 1 DOI: 10.13228/j.boyuan.issn1006-6543.20210105

    [9] 田甜. 喷射成形制备新型第三代粉末高温合金的组织和性能[学位论文]. 北京: 北京科技大学, 2020

    Tian T. Microstructure and Properties of The New Third Generation Powder Metallurgy Superalloy Prepared by Spray Forming Processing [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    [10] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展. 中国有色金属学报, 2019, 29(9): 1917 DOI: 10.19476/j.ysxb.1004.0609.2019.09.08

    Huang B Y, Wei W F, Li S L, et al. Development of modern powder metallurgy materials and technology. Chin J Nonferrous Met, 2019, 29(9): 1917 DOI: 10.19476/j.ysxb.1004.0609.2019.09.08

    [11] 张义文, 迟悦, 刘建涛. 俄罗斯新型粉末高温合金研制进展. 粉末冶金工业, 2015, 25(4): 1

    Zhang Y W, Chi Y, Liu J T. Recent development of new type powder metallurgy superalloys in Russia. Powder Metall Ind, 2015, 25(4): 1

    [12] 张义文, 贾建, 刘建涛, 等. 俄罗斯新型粉末高温合金研究最新进展. 粉末冶金工业, 2020, 30(6): 102 DOI: 10.13228/j.boyuan.issn1006-6543.20200193

    Zhang Y W, Jia J, Liu J T, et al. Recent development of new type powder metallurgy superalloys in Russia. Powder Metall Ind, 2020, 30(6): 102 DOI: 10.13228/j.boyuan.issn1006-6543.20200193

    [13] 张义文, 刘建涛. 粉末高温合金研究进展. 中国材料进展, 2013, 32(1): 1 DOI: 10.7502/j.issn.1674-3962.2013.01.01

    Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Mater China, 2013, 32(1): 1 DOI: 10.7502/j.issn.1674-3962.2013.01.01

    [14] 张明. 先进航空发动机涡轮盘用FGH98合金组织与性能研究[学位论文]. 北京: 北京科技大学, 2018

    Zhang M. Study on Microstructure and Properties of FGH98 Alloy for Advanced Aero Engine Turbine Disk [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    [15] 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展. 金属学报, 2020, 56(10): 1313 DOI: 10.11900/0412.1961.2020.00199

    Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China. Acta Metall Sin, 2020, 56(10): 1313 DOI: 10.11900/0412.1961.2020.00199

    [16]

    Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol, 2020, 367: 724 DOI: 10.1016/j.powtec.2020.04.030

    [17]

    Czisch C, Fritsching U. Flow-adapted design option for free-fall atomizers. Atomiz Sprays, 2008, 18(6): 511 DOI: 10.1615/AtomizSpr.v18.i6.30

    [18] 李周, 张国庆, 张翼飞, 等. 氩气雾化高温合金粉末的制备及其组织与性能. 中国有色金属学报, 2005, 15(S2): 335

    Li Z, Zhang G, Zhang Y, et al. Structures and properties of argon-gas atomized superalloy powders. J Chin J Nonferrous Met, 2005, 15(S2): 335

    [19] 张国庆, 刘娜, 李周. 高性能金属材料雾化与成形技术研究进展. 航空材料学报, 2020, 40(3): 95 DOI: 10.11868/j.issn.1005-5053.2020.000093

    Zhang G Q, Liu N, Li Z. Research progress of atomization and forming technology of high performance metallic materials. J Aeron Mater, 2020, 40(3): 95 DOI: 10.11868/j.issn.1005-5053.2020.000093

    [20]

    Jia W M, Chen S Y, Wei M W, et al. Characteristics and printability of K417G nickel-base alloy powder prepared by VIGA method. Powder Metall, 2019, 62(1): 30 DOI: 10.1080/00325899.2018.1546921

    [21] 杨乐彪, 任晓娜, 夏敏, 等. 电极感应熔化气雾化粉末特性及液滴尺寸影响因素的研究. 稀有金属材料与工程, 2020, 49(6): 2017

    Yang L B, Ren X N, Xia M, et al. Study on powder characteristics and effect factors of droplets size during electrode induction melting gas atomization. Rare Met Mater Eng, 2020, 49(6): 2017

    [22] 黄传收, 柳中强, 吴苑标, 等. 电极感应熔炼气雾化制备Ti-6Al-4V合金粉末的性能及其表征. 稀有金属材料与工程, 2019, 48(10): 3302

    Huang C S, Liu Z Q, Wu Y B, et al. Properties and characterization of Ti-6Al-4V alloy fine powders prepared by electrode induction melting gas atomization (EIGA) technique. Rare Met Mater Engg, 2019, 48(10): 3302

    [23] 高正江, 张国庆, 李周, 等. 氩气雾化高温合金粉末的凝固组织特征. 粉末冶金技术, 2011, 29(2): 93 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.02.003

    Gao Z J, Zhang G Q, Li Z, et al. Microstructure characteristics of superalloy powders during rapid solidification prepared by argon atomization. Powder Metall Technol, 2011, 29(2): 93 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.02.003

    [24] 袁华, 李周, 许文勇, 等. 氩气雾化制备高温合金粉末的研究. 粉末冶金工业, 2010, 20(4): 1 DOI: 10.3969/j.issn.1006-6543.2010.04.001

    Yuan H, Li Z, Xu W Y, et al. The study of argon atomized superalloy powders. Powder Metall Ind, 2010, 20(4): 1 DOI: 10.3969/j.issn.1006-6543.2010.04.001

    [25]

    Zeoli N, Gu S. Computational validation of an isentropic plug nozzle design for gas atomisation. Comput Mater Sci, 2008, 42(2): 245 DOI: 10.1016/j.commatsci.2007.07.013

    [26] 刘杨, 李周, 张国庆, 等. 双层雾化器流场的模拟研究. 航空材料学报, 2015, 35(5): 63 DOI: 10.11868/j.issn.1005-5053.2015.5.010

    Liu Y, Li Z, Zhang G Q, et al. Flow field of double layer atomizer. J Aeron Mater, 2015, 35(5): 63 DOI: 10.11868/j.issn.1005-5053.2015.5.010

    [27] 刘杨, 张国庆, 李周, 等. 非接触式测试技术在气雾化制粉研究中的应用. 中国材料进展, 2020, 39(3): 206 DOI: 10.7502/j.issn.1674-3962.201908016

    Liu Y, Zhang G Q, Li Z, et al. Application of non-contact measurement techniques in gas atomization powder preparation research. Mater China, 2020, 39(3): 206 DOI: 10.7502/j.issn.1674-3962.201908016

    [28] 孙剑飞, 曹福洋, 崔成松, 等. 金属雾化过程中气体流场动力学行为. 粉末冶金技术, 2002, 20(2): 79 DOI: 10.3321/j.issn:1001-3784.2002.02.004

    Sun J F, Cao F Y, Cui C S, et al. Dynamic behaviors of gas velocity field during metal atomization. Powder Metall Technol, 2002, 20(2): 79 DOI: 10.3321/j.issn:1001-3784.2002.02.004

    [29]

    Zhang Q, Zheng L, Yuan H, et al. Influence of storage conditions on powder surface state and hot deformation behavior of a powder metallurgy nickel-based superalloy. Adv Eng Mater, 2022, 24(8): 2101615 DOI: 10.1002/adem.202101615

    [30]

    Zhang Q, Zheng L, Yuan H, et al. Effects of composition and particle size on the surface state and degassing behavior of nickel-based superalloy powders. Appl Surf Sci, 2021, 556: 149793 DOI: 10.1016/j.apsusc.2021.149793

    [31]

    Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng:A, 2006, 435-436: 84 DOI: 10.1016/j.msea.2006.07.053

    [32]

    Guo Y L, Jia L N, Kong B, et al. Microstructure and surface oxides of rapidly solidified Nb-Si based alloy powders. Mater Des, 2017, 120: 109 DOI: 10.1016/j.matdes.2017.02.014

    [33]

    Chasoglou D, Hryha E, Norell M, et al. Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis. Appl Surface Sci, 2013, 268: 496 DOI: 10.1016/j.apsusc.2012.12.155

    [34]

    Hryha E, Gierl C, Nyborg L, et al. Surface composition of the steel powders pre-alloyed with manganese. Appl Surface Sci, 2010, 256(12): 3946 DOI: 10.1016/j.apsusc.2010.01.055

    [35]

    Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys. J Powder Metall Min, 2015, 4: 127

    [36]

    Appa Rao G, Prasad K S, Kumar M, et al. Characterisation of hot isostatically pressed nickel base superalloy Inconel* 718. Mater Sci Technol, 2003, 19(3): 313 DOI: 10.1179/026708303225010605

    [37]

    Estrada J L, Duszczyk J, Korevaar B M. Gas entrapment and evolution in prealloyed aluminium powders. J Mater Sci, 1991, 26(6): 1431 DOI: 10.1007/BF00544650

    [38]

    Iwamoto K, Yamasaki M, Kawamura Y. Vacuum degassing behavior of rapidly solidified Al–Mn–Zr alloy powders. Mater Sci Eng:A, 2007, 449-451: 1013 DOI: 10.1016/j.msea.2006.02.252

    [39]

    Yamasaki M, Iwamoto K, Tamagawa H, et al. Vacuum degassing behavior of Zr-, Ni- and Cu-based metallic glass powders. Mater Sci Eng:A, 2007, 449-451: 907 DOI: 10.1016/j.msea.2006.02.340

    [40]

    Yamasaki M, Kawamura Y. Changes in the surface characteristics of gas-atomized pure aluminum powder during vacuum degassing. Mater Trans, 2006, 47(8): 1902 DOI: 10.2320/matertrans.47.1902

    [41]

    Yamasaki M, Kawamura Y. Effect of vacuum degassing on surface characteristics of rapidly solidified Al-based alloy powders. Mater Trans, 2004, 45(4): 1335 DOI: 10.2320/matertrans.45.1335

    [42] 刘玉峰, 刘娜, 郑亮, 等. HIP温度和粉末粒度对PM TiAl合金组织和性能的影响. 稀有金属材料与工程, 2019, 48(10): 3227

    Liu Y F, Liu N, Zheng L, et al. Effect of HIP temperatures and powder particle size on microstructure and properties of PM TiAl alloy. Rare Met Mater Eng, 2019, 48(10): 3227

    [43]

    Rabin B H, Smolik G R, Korth G E. Characterization of entrapped gases in rapidly solidified powders. Mater Sci Eng:A, 1990, 124(1): 1 DOI: 10.1016/0921-5093(90)90328-Z

    [44] 侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131 DOI: 10.19591/j.cnki.cn11-1974/tf.2021030038

    Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131 DOI: 10.19591/j.cnki.cn11-1974/tf.2021030038

    [45]

    Luo S, Wang H Z, Gao Z Y, et al. Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model. Mater Des, 2021, 212: 110264 DOI: 10.1016/j.matdes.2021.110264

    [46] 国为民, 吴剑涛, 陈淦生, 等. 真空脱气预处理工艺与FGH95合金热诱导孔洞的改善和性能提高的研究. 航空材料学报, 2003, 23(增刊1): 21

    Guo W M, Wu J T, Chen G S, et al. The influence of vacuum degassing pretreatment on microstructure and properties of superalloy FGH95. J Aeron Mater, 2003, 23(Suppl 1): 21

    [47] 关书文, 刘世昌, 时坚, 等. 气雾化制备金属粉末的研究进展及展望. 铸造, 2022, 71(2): 136 DOI: 10.3969/j.issn.1001-4977.2022.02.002

    Guan S W, Liu S C, Shi J, et al. Research progress and prospect of metal powder preparation by gas atomization. Foundry, 2022, 71(2): 136 DOI: 10.3969/j.issn.1001-4977.2022.02.002

    [48]

    Tan L M, Li Y P, Liu C Z, et al. The evolution history of superalloy powders during hot consolidation and plastic deformation. Mater Charact, 2018, 140: 30 DOI: 10.1016/j.matchar.2018.03.039

    [49]

    Riener K, Oswald S, Winkler M, et al. Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF). Addit Manuf, 2021, 39: 101896

    [50]

    Appa Rao G, Srinivas M, Sarma D S. Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng:A, 2004, 383(2): 201 DOI: 10.1016/j.msea.2004.05.062

    [51]

    Appa Rao G, Srinivas M, Sarma D S. Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718. Mater Sci Technol, 2004, 20(9): 1161 DOI: 10.1179/026708304225022124

    [52]

    Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact. Mater Sci Eng:A, 2014, 599: 186 DOI: 10.1016/j.msea.2014.01.095

    [53]

    Qiu C L, Attallah M M, Wu X H, et al. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater Sci Eng:A, 2013, 564: 176 DOI: 10.1016/j.msea.2012.11.084

    [54] 张轶波, 郑亮, 许文勇, 等. 莫来石基耐火材料夹杂物与粉末冶金高温合金FGH96界面反应. 航空材料学报, 2022, 42(2): 20 DOI: 10.11868/j.issn.1005-5053.2021.000159

    Zhang Y B, Zheng L, Xu W Y, et al. Interfacial reaction between mullite-based inclusions and PM superalloy FGH96. J Aeron Mater, 2022, 42(2): 20 DOI: 10.11868/j.issn.1005-5053.2021.000159

    [55]

    Zheng L, Zhang G Q, Gorley M J, et al. Effects of vacuum on gas content, oxide inclusions and mechanical properties of Ni-based superalloy using electron beam button and synchrotron diffraction. Mater Des, 2021, 207: 109861 DOI: 10.1016/j.matdes.2021.109861

    [56]

    Huron E S, Roth P G. The influence of inclusions on low cycle fatigue life in a P/M nickel-base disk superalloy // Superalloys 1996. Champion, PA: TMS, 1996: 359

    [57] 李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响. 北京: 冶金工业出版社, 2010

    Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels: Effeccts of Nonmetallic Inclusions. Beijing: Metallurgical Industry Press, 2010

    [58] 张轶波, 郑亮, 许文勇, 等. 热处理温度对刚玉基耐火材料组织和微粒脱落的影响. 材料工程, 2022, 50(6): 138

    Zhang Y B, Zheng L, Xu W Y, et al. Effects of heat treatment temperature on microstructure and particle shedding of corundum-based refractory materials. J Mater Eng, 2022, 50(6): 138

    [59] 侯杰. 组织特征和微米级颗粒对粉末高温合金FGH4096疲劳裂纹扩展的影响[学位论文]. 北京: 北京科技大学, 2018

    Hou J. Influences of Microstructure Characteristics and Microscale Particles on Fatigue Crack Propagation for P/M Superalloy FGH96 [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    [60]

    Kennedy S K, Dalley A M, Kotyk G J. Additive manufacturing: Assessing metal powder quality through characterizing feedstock and contaminants. J Mater Eng Perform, 2019, 28(2): 728 DOI: 10.1007/s11665-018-3841-5

    [61]

    Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 DOI: 10.1016/j.actamat.2016.07.019

    [62] 韩寿波, 张义文, 田象军, 等. 航空航天用高品质3D打印金属粉末的研究与应用. 粉末冶金工业, 2017, 27(6): 44 DOI: 10.13228/j.boyuan.issn1006-6543.20170100

    Han S B, Zhang Y W, Tian X J, et al. Research and application of high quality 3D printing metal powders for aerospace use. Powder Metall Ind, 2017, 27(6): 44 DOI: 10.13228/j.boyuan.issn1006-6543.20170100

  • 期刊类型引用(2)

    1. 初建鹏,冯建程,鞠翔宇,姜涛. 动载作用下高强度钢的层裂特性研究. 兵器材料科学与工程. 2024(02): 129-135 . 百度学术
    2. 班伟,陈嘉琪,刘璐璐,葛涛,张帅. 紧耦合气雾化喷嘴流场特性研究. 粉末冶金技术. 2024(03): 312-319 . 本站查看

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数:  4749
  • HTML全文浏览量:  399
  • PDF下载量:  162
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-26
  • 录用日期:  2022-08-06
  • 网络出版日期:  2022-08-06
  • 刊出日期:  2022-10-27

目录

/

返回文章
返回