高级检索

纳米碳化聚合物的制备、性质及应用

易健宏, 赵文敏, 何衍, 鲍瑞

易健宏, 赵文敏, 何衍, 鲍瑞. 纳米碳化聚合物的制备、性质及应用[J]. 粉末冶金技术, 2022, 40(5): 401-412. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060002
引用本文: 易健宏, 赵文敏, 何衍, 鲍瑞. 纳米碳化聚合物的制备、性质及应用[J]. 粉末冶金技术, 2022, 40(5): 401-412. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060002
YI Jian-hong, ZHAO Wen-min, HE Yan, BAO Rui. Preparation, properties, and application of nano-carbonized polymers[J]. Powder Metallurgy Technology, 2022, 40(5): 401-412. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060002
Citation: YI Jian-hong, ZHAO Wen-min, HE Yan, BAO Rui. Preparation, properties, and application of nano-carbonized polymers[J]. Powder Metallurgy Technology, 2022, 40(5): 401-412. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060002

纳米碳化聚合物的制备、性质及应用

基金项目: 国家自然科学基金资助项目(52064032,52174345);云南省科技厅重大科技专项(202002AB080001)
详细信息
    通讯作者:

    E-mail: wenmzhao@163.com (赵文敏)

    baorui@kmust.edu.cn (鲍瑞)

  • 中图分类号: TB333

Preparation, properties, and application of nano-carbonized polymers

More Information
  • 摘要:

    纳米碳化聚合物作为一种新型的碳纳米材料引起了人们广泛的关注。纳米碳化聚合物具有独特的核壳结构(sp2/sp3组成碳核,聚合物链、官能团构成壳),学者们通过调控反应条件以获得预期的纳米碳化聚合物结构,并将其广泛应用于生物成像、传感器、催化、发光二极管、铜基复合材料等领域。本文分析讨论了纳米碳化聚合物的结构、合成方法、形成机理、主要性质及应用,介绍了该同素异构体在材料、尤其是粉末冶金材料中的最新研究成果,最后对纳米碳化聚合物未来的发展进行展望。

    Abstract:

    As a new type of carbon nanomaterials, the nano-carbonized polymers have attracted the extensive attention. The nano-carbonized polymers show the unique core-shell structure (carbon core formed by sp2/sp3, shell formed by functional groups and polymer chains) which have been widely used in biological imaging, sensors, catalysis, light-emitting diode, copper matrix composites, and other fields. The ideal nano-carbonized polymers can be obtained by controlling the reaction conditions. The structure, synthesis method, formation mechanism, main properties, and applications of the nano-carbonized polymers were discussed and analyzed in this paper, and the latest research about the isomer in material field, especially in the powder metallurgy materials, was introduced. Finally, the future development outlook of the nano-carbonized polymers was prospected.

  • 镍基材料具有较高的熔点和高温强度,适合用作苛刻工作条件下摩擦材料的基体,近年来,对镍基高温摩擦材料摩擦磨损的研究越来越多[1-5]。为得到合适的摩擦系数和低的磨损率,需要在干摩擦条件下工作的金属减摩材料中加入固体润滑剂,以降低磨损、延长材料寿命。由于这些润滑剂具有较低的硬度,可以在摩擦副之间形成润滑薄膜,减少摩擦副之间的直接接触,从而减轻材料的磨损,常见的固体润滑剂有石墨、BN、MoS2、WS2、TaS2等。这些润滑剂具有层状晶体结构,层与层之间的结合力较小,可以有效地降低摩擦系数和磨损率,提高材料的抗磨损性能。

    Li等[6]使用销盘式摩擦试验机研究了含质量分数0%~20%MoS2润滑剂的镍基材料在室温到600 ℃范围内的摩擦性能,结果表明,添加了MoS2的镍基材料具有更低的磨损率,其磨损率比基体材料低1~2个数量级,含12%MoS2润滑剂的镍基材料具有最好的摩擦性能。Xiong[7]在研究含质量分数0%~20%MoS2润滑剂对Ni–Cr基合金润滑特性的影响中也得出了相似的结论。Li和Xiong[8]采用同样的方法研究了含质量分数3%石墨、5%MoS2及3%石墨+(5%~15%)MoS2的Ni–Cr基材料在室温到600 ℃温度范围内的摩擦磨损性能,结果表明,在室温到600 ℃范围内,含石墨+MoS2润滑剂的Ni–Cr材料比单独含石墨或含MoS2的材料具有更低更稳定的摩擦系数和磨损率;由于润滑剂的含量较低,单独添加3%石墨和5%MoS2的润滑效果难以得到体现,润滑剂添加总量应控制在质量分数10%左右效果较好,对基体的力学性能影响较小。Mahathanabodee等[9]研究了润滑剂BN、MoS2和BN/MoS2(体积比为1:1)对粉末冶金烧结316不锈钢磨损性能的影响,结果表明,随BN体积分数的增加,材料的磨损率升高,摩擦系数降低,随MoS2体积分数的增加,材料的磨损率没有明显变化;含体积分数20%MoS2的材料具有最高的抗磨损性能,含体积分数20%BN的材料具有最低的摩擦系数。研究认为,BN具有较低的硬度,可在摩擦副之间形成有效润滑层,使摩擦副具有较低的摩擦系数;部分MoS2在烧结过程中的分解使材料的硬度提高,相应的提高了材料的抗磨损性能。

    在研究润滑剂对镍基材料摩擦性能的影响中发现,不同润滑剂的组合要比同含量的单个润滑剂更能增强镍基材料的抗磨损性能,即具有协同效应[8-11]。根据文献可知,润滑剂添加总量一般控制在10%(质量分数)左右对镍基材料的抗磨损性能具有最佳的效果[6, 8, 12],润滑剂含量过低难以在摩擦副表面形成足够的润滑薄膜,含量过高会降低基体材料的整体强度,从而降低基体材料的抗磨损性能。

    参考近年来的研究发现,润滑剂总量基本在一定范围内变动,且各类润滑剂的含量是固定的,难以体现各类润滑剂比例变化时是否具有协同效应。为研究BN和MoS2两种润滑剂对镍基材料摩擦性能的影响以及两种润滑剂在添加总量为10%(质量分数)时的润滑协同效应,通过热压烧结制备了含不同润滑剂的镍基材料,其中润滑剂总质量分数为10%,各类润滑剂质量分数为0%、10%BN、10%MoS2、5%BN+5%MoS2,利用销盘摩擦磨损试验机对4种镍基材料进行摩擦磨损实验,通过扫描电子显微镜(scanning electron microscope,SEM)观察磨损表面形貌,分析不同润滑剂对镍基材料抗磨损性能的影响。

    保持润滑剂总质量分数10%不变,在镍基基体材料(80%Ni+20%Cr,质量分数)中加入质量分数为0%、10%MoS2、5%MoS2+5%BN和10%BN的润滑剂,对比不同种类润滑剂对镍基材料摩擦磨损性能的影响,表 1为各原料粉末的物理参数。根据添加润滑剂的质量分数,分别命名不同组分的摩擦材料为0MB、10M、5M5B、10B。

    表  1  镍基摩擦材料及润滑剂的物理参数
    Table  1.  Physical parameters of the Ni-based composites and solid lubricants
    试样 粒度/ µm 纯度/ %
    基体材料(80%Ni+20%Cr) 75.0 99.8
    MoS2 30.0 99.0
    BN 0.7~11.4 99.0
    下载: 导出CSV 
    | 显示表格

    将称量好的粉末置于罐式行星球式混料机中混料8 h,随后放入石墨模具,在真空烧结炉中加压烧结,加热速率10 ℃·min-1,当加热到1200 ℃时加压20 MPa、保温30 min,保温结束后随炉冷却到室温,用线切割机切割成ϕ4 mm × 15 mm的圆柱销待用。

    在销–盘高速摩擦实验机上进行摩擦–磨损实验,试样为圆柱销,对偶为圆盘。对偶盘材料为Cr12MoV钢,硬度HRC55~HRC58,化学成分(质量分数)为1.45%~1.70% C、11.0%~12.5% Cr、0.40%~0.60% Mo和0.15%~0.50%V。试验压力为30~60 N,滑动速度为0.35~0.58 m·s-1(300~500 r·min-1)。每次实验前用丙酮清洗试样和对偶盘,并用800#砂纸打磨对偶盘,用精度±0.1 mg的电子称对磨损前和磨损后的试样进行称量。摩擦实验中试样销长度的磨损量为5 mm左右,磨损率采用磨损质量除以滑动距离及施加的载荷的乘积计算得到,如下式所示:

    $$S = \frac{m}{{Nl}}$$ (1)

    式中,S为磨损率;m为磨损质量,g;N为载荷,N;l为滑动距离,m。

    用JSM-5600LV扫描电镜观察试样磨损表面,在材料万能试验机上进行压缩性能实验,加载速率为0.05 mm·min-1,压缩试样的尺寸为ϕ4 mm × 8 mm。

    图 1为添加不同润滑剂镍基材料的微观形貌。图 1(a)为添加10%MoS2润滑剂的镍基材料,其基体上散布的深灰色点块状物质为MoS2图 1(b)为添加10%BN润滑剂的镍基材料,其基体上蠕虫状区域为侵蚀掉BN而留下的空隙。从图中可以看出,MoS2与基体之间结合紧密,BN与基体之间结合比较松散,这会对基体的力学性能以及抗磨损性能产生不同影响。

    图  1  添加不同润滑剂镍基材料的显微形貌:(a)10M;(b)10B
    Figure  1.  SEM morphology of nickel-based materials with different lubricants: (a) 10M; (b) 10B

    图 2为镍基材料在不同载荷和滑动速度下的磨损率。当载荷超过50 N后,0MB和5M5B试样在摩擦磨损试验机会出现较大振动以及摩擦系数变动较大的问题,所以这里忽略这两种试样的磨损率曲线。从图 2可以看出,10M试样具有最低的磨损率,5M5B试样具有最高的磨损率。在滑动速度300 r·min-1和载荷40~60 N下,10M和10B试样具有相同的磨损率变化趋势;在滑动速度500 r·min-1和载荷60 N下,10M和10B两种试样具有相近的磨损率。

    图  2  不同载荷和滑动速度下镍基材料的磨损率:(a)300 r·min-1;(b)500 r·min-1
    Figure  2.  Wear rates of nickel-based materials in the different loads at the different speeds: (a) 300 r·min-1; (b) 500 r·min-1

    图 3为不同滑动速度和载荷下镍基材料的摩擦系数。从图 3(a)可以看出,在滑动速度300 r·min-1和载荷40 N下,10B试样具有最低以及平稳的摩擦系数,10M试样的摩擦系数在0.2~0.4的范围内,且基本保持稳定;5M5B和0MB试样具有较高且变动范围较大的摩擦系数。从图 3(b)可以看出,在滑动速度500 r·min-1及载荷50 N的摩擦条件下,10M试样具有较低且平稳的摩擦系数,而其他的材料摩擦系数变动范围较大。

    图  3  不同载荷和滑动速度下镍基材料的摩擦系数:(a)300 r·min-1,40 N;(b)500 r·min-1,50 N
    Figure  3.  Friction coefficients of nickel-based materials in the different loads at the different speeds: (a) 300 r·min-1, 40 N; (b) 500 r·min-1, 50 N

    图 4为添加不同润滑剂镍基材料的压缩曲线,10B材料具有较低的压缩强度,约为55 MPa,5M5B材料的压缩强度约为250 MPa,0MB和10M材料为塑性材料,在压缩过程中没有断裂。从图中可以看出,基体材料由于没有添加润滑剂具有较高的塑性;10M材料虽然添加了10%MoS2,但其塑性没有受到明显影响,也说明MoS2对镍基材料具有强化作用[9, 13];添加BN的镍基材料塑性明显下降,在压缩应变接近0.2左右时接近强度极限。

    图  4  添加不同润滑剂镍基材料的压缩曲线
    Figure  4.  Compression curves of nickel-based materials with different lubricants

    图 5为镍基材料在载荷30 N、滑动速度300 r·min-1下的磨损表面形貌。由图可知,0MB基体材料与10M材料的磨损形貌基本相似,都表现为塑性变形,但基体材料表面为小区域塑性变形并分布着脱落的小颗粒,而10M材料表面为大面积的塑性变形且脱落的颗粒较少。由于基体材料没有添加润滑剂,其局部强度较高,在与对偶的摩擦过程中,首先出现的是局部凸起的变形和断裂,所以其表面为小区域变形以及较多的脱落颗粒;10M材料由于基体中含有较软的润滑剂,在与对偶的摩擦过程中,微凸起出现大面积变形,由于润滑剂在摩擦副表面之间形成了润滑薄膜,有效的减轻了磨损[14],所以其磨损表面的脱落颗粒较少。图 5(b)图 5(d)分别为5M5B和10B材料的磨损表面微观形貌,两种材料表面覆盖着由脱落物形成的薄膜。由于BN硬度较低,且与基体材料的结合较为松散,BN颗粒相当于基体材料上存在的空洞,在摩擦过程中微凸起大量折断并脱落,与基体形成较为松散的薄膜,削弱了基体的强度[15-16],增加了材料脆性;5M5B颗粒强度较高,可与基体形成较为紧密的薄膜。

    图  5  镍基材料在载荷30 N、滑动速度300 r·min-1下的磨损表面形貌:(a)0MB;(b)5M5B;(c)10M;(d)10B
    Figure  5.  Wear surfaces of nickel-based materials in the load of 30 N at the sliding speed of 300 r·min-1: (a) 0MB; (b) 5M5B; (c) 10M; (d) 10B

    图 6为镍基材料在载荷50 N、滑动速度500 r·min-1下的磨损表面形貌。图 6(a)~图 6(c)分别为基体、5M5B和10M材料的磨损表面形貌,可以看出三者表面沿滑动方向布满沟槽,这是磨粒磨损的表面特征。由于缺乏润滑剂的润滑作用,基体材料表面的沟槽较宽,5M5B和10M材料磨损表面的沟槽较为细小。图 6(d)中,10B材料的磨损表面覆盖着较为松散的薄膜,这主要是因BN强度较低,在较高载荷下产生较多细小磨屑所致。

    图  6  镍基材料在载荷50 N、滑动速度500 r·min-1下的磨损表面形貌:(a)0MB;(b)5M5B;(c)10M;(d)10B
    Figure  6.  Wear surfaces of nickel-based materials in the load of 50 N at the sliding speed of 500 r·min-1: (a) 0MB; (b) 5M5B; (c) 10M; (d) 10B

    图 3(a)所示,在较低的载荷作用下,10B材料由于强度较低,产生较多的磨屑,这些富含BN的磨屑在摩擦副表面之间形成了有效的润滑薄膜,所以10B镍基材料具有低且平稳的摩擦系数;其他材料由于具有较高的强度,在较低的载荷作用下难以在摩擦副表面之间形成有效的润滑层,所以具有较高且变动范围较大的摩擦系数。在较高的载荷作用下,由于具有较高的强度且在摩擦副之间形成有效的润滑层,所以10M材料具有较低且平稳的摩擦系数(图 3(b))以及最低的磨损率(图 2);尽管5M5B和10B材料具有与10M同样含量的润滑剂,但由于材料脆性较大,在摩擦过程中微凸起易于变形断裂,难以在摩擦副之间形成有效的稳定润滑层,所以具有较高且变动范围较大的摩擦系数(图 3)以及较高的磨损率(图 2)。

    采用热压烧结制备了含不同质量分数润滑剂(0%、10%MoS2、5%MoS2+5%BN和10%BN)的镍基材料,通过摩擦磨损实验分析了不同润滑剂对镍基材料抗磨损性能的影响。

    (1)含质量分数10%MoS2润滑剂的镍基材料具有较低且平稳的摩擦系数和最低的磨损率,MoS2对基体材料的强度没有产生明显的影响。

    (2)含质量分数10%BN润滑剂的镍基材料在40 N较低载荷下具有最低的摩擦系数,BN对材料的强度产生负面影响,其具有最低的压缩强度。

    (3)含质量分数10%MoS2润滑剂的镍基材料的抗磨损性能优于含10%BN润滑剂的镍基材料。

  • 图  1   水热法制备纳米碳化聚合物[8]

    Figure  1.   Preparation of NCP by hydrothermal method[8]

    图  2   纳米碳化聚合物的反应过程[2]

    Figure  2.   Reaction process of NCP[2]

    图  3   水热反应合成纳米碳化聚合物流程(a)、纳米碳化聚合物在紫外灯下的荧光照片(b)和纳米碳化聚合物室温磷光寿命(c)[16]

    Figure  3.   Schematic diagram of NCP preparation by hydrothermal (a), photographs of NCP powders taken under the UV lamp (365 nm) (b), and time-resolved room temperature phosphorescence spectra of NCP (c)[16]

    图  4   不同反应时间合成纳米碳化聚合物流程及产物的形态[17]

    Figure  4.   Different morphology of the NCP products obtained by different reaction times[17]

    图  5   纳米碳化聚合物中交联增强效应表征[2]

    Figure  5.   CEE effect on the nano-carbonized polymers[2]

    图  6   纳米碳化聚合物在铜复合材料中的应用:(a)复合材料制备过程;(b)复合材料力学性能;(c)复合材料微观结构;(d)复合材料选区高分辨透射电子显微镜(transmission electron microscope,TEM)图[42]

    Figure  6.   Application of the nano-carbonized polymers in the Cu-based composites: (a) preparation of composites; (b) mechanical properties of composites; (c) micro-structure of composites; (d) TEM image of CPD/Cu composites[42]

    图  7   纳米碳化聚合物在协同增强铜复合材料中的应用:(a)复合材料制备过程;(b)复合材料力学性能;(c)复合材料机理示意图;(d)和(e)NCP-CNT/Cu复合材料微观结构[67]

    Figure  7.   Application of the nano-carbonized polymers in the synergistically reinforced copper composites: (a) preparation of composites; (b) mechanical properties of composites; (c) schematic diagram of the NCP and CNT in the Cu matrix; (d) and (e) microstructures of the NCP-CNT/Cu composites[67]

    表  1   反应物、制备方法及掺杂对纳米碳化聚合物产物的影响

    Table  1   Effect of reactants, preparation methods, and doping on the NCP products

    主要原料掺杂元素制备方法荧光颜色产物尺寸 / nm荧光量子产率 / %参考文献
    柠檬酸+乙二胺N水热蓝色4.080.0[19]
    柠檬酸+尿素N微波辅助绿色3.014.0[20]
    柠檬酸+尿素N溶剂热橙色7.046.0[21]
    尿素+对苯二胺N水热蓝/绿/黄/红2.635.0[22]
    多巴胺+邻苯二胺N水热7.826.0[23]
    柠檬酸+甲酰胺N溶剂热蓝/绿/红6.516.0[24]
    蔗糖+正磷酸P微波辅助绿6.5[25]
    三溴化磷+对苯二酚P溶剂热10.025.0[26]
    间苯二胺、乙二胺和正磷酸P水热蓝/绿8.151.0[6]
    聚噻吩苯丙酸S水热10.02.3[27]
    柠檬酸钠+硫代硫酸钠S水热4.667.0[28]
    2,2'-(乙二硫)二乙酸S自组装蓝/绿3.36.5[29]
    三溴化硼+氢醌B溶剂热15.014.8[30]
    硼酸+蔗糖B水热5.02.2[31]
    下载: 导出CSV
  • [1]

    Zeng Q S, Feng T L, Tao S Y, et al. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci Appl, 2021, 10: 142 DOI: 10.1038/s41377-021-00579-6

    [2]

    Tao S Y, Feng T L, Zheng C Y, et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. J Phys Chem Lett, 2019, 10(17): 5182 DOI: 10.1021/acs.jpclett.9b01384

    [3]

    Chu K, Wang F, Li Y B, et al. Interface structure and strengthening behavior of graphene/CuCr composites. Carbon, 2018, 133: 127 DOI: 10.1016/j.carbon.2018.03.018

    [4]

    Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 2004, 126: 12736 DOI: 10.1021/ja040082h

    [5]

    Xia C L, Zhu S J, Feng T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci, 2019, 6: 1901316 DOI: 10.1002/advs.201901316

    [6]

    Sun X C, Brükner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale, 2015, 7: 17278 DOI: 10.1039/C5NR05549K

    [7]

    Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater, 2010, 22: 734 DOI: 10.1002/adma.200902825

    [8]

    Meng W X, Wang B Y, Ai L, et al. Engineering white light-emitting diodes with high color rendering index from biomass carbonized polymer dots. J Colloid Interface Sci, 2021, 598: 274 DOI: 10.1016/j.jcis.2021.04.022

    [9]

    Wang H B, Zhang M L, Wei K Q, et al. Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon, 2021, 179: 692 DOI: 10.1016/j.carbon.2021.04.061

    [10]

    Tang X D, Yu H M, Bui B, et al. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater, 2021, 6: 1541 DOI: 10.1016/j.bioactmat.2020.11.006

    [11]

    Niu X Q, Song T B, Xiong H M. Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification. Chin Chem Lett, 2021, 32: 1953 DOI: 10.1016/j.cclet.2021.01.006

    [12]

    Wang Q, Wang H X, Liu D, et al. Synthesis of flake-shaped nitrogen-doped carbon quantum dot/polyaniline (N-CQD/PANI) nanocomposites via rapid-mixing polymerization and their application as electrode materials in supercapacitors. Synth Met, 2017, 231: 120 DOI: 10.1016/j.synthmet.2017.06.018

    [13]

    Liu Y, Xiao N, Gong N Q, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon, 2014, 68: 258 DOI: 10.1016/j.carbon.2013.10.086

    [14]

    Wang B Y, Song H Q, Tang Z Y, et al. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Res, 2022, 15: 942 DOI: 10.1007/s12274-021-3579-5

    [15]

    Song Y B, Zhu S J, Zhang S T, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C, 2015, 3: 5976 DOI: 10.1039/C5TC00813A

    [16]

    Shen J, Xu B, Wang Z F, et al. Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. J Mater Chem C, 2021, 9: 6781 DOI: 10.1039/D1TC01057C

    [17]

    Liu B, Chen Z, Chu B, et al. Clustering-induced white light emission from carbonized polymer dots. Adv Photonics Res, 2021, 2: 2000161 DOI: 10.1002/adpr.202000161

    [18]

    Liu J J, Li D W, Zhang K, et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small, 2018, 14(15): 1703919 DOI: 10.1002/smll.201703919

    [19]

    Zhu S J, Meng Q N, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed, 2013, 52: 3953 DOI: 10.1002/anie.201300519

    [20]

    Qu S N, Wang X Y, Lu Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed, 2012, 51: 12215 DOI: 10.1002/anie.201206791

    [21]

    Qu S N, Zhou D, Li D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv Mater, 2016, 28: 3516 DOI: 10.1002/adma.201504891

    [22]

    Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10: 484 DOI: 10.1021/acsnano.5b05406

    [23]

    Lu S Y, Sui L Z, Liu J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv Mater, 2017, 29: 1603443 DOI: 10.1002/adma.201603443

    [24]

    Pan L L, Sun S, Zhang A D, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater, 2015, 27: 7782 DOI: 10.1002/adma.201503821

    [25]

    Chandra S, Das P, Bag S, et al. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 2011, 3: 1533 DOI: 10.1039/c0nr00735h

    [26]

    Zhou J, Shan X Y, Ma J J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Adv, 2014, 4: 5465 DOI: 10.1039/c3ra45294h

    [27]

    Ge J C, Jia Q Y, Liu W M, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater, 2015, 27: 4169 DOI: 10.1002/adma.201500323

    [28]

    Strauss V, Wang H Z, Delacroix S, et al. Carbon nanodots revised: the thermal citric acid/urea reaction. Chem Sci, 2020, 11: 8256 DOI: 10.1039/D0SC01605E

    [29]

    Do S G, Kwon W S, Kim Y H, et al. N, S-induced electronic states of carbon nanodots toward white electroluminescence. Adv Opt Mater, 2016, 4: 276 DOI: 10.1002/adom.201500488

    [30]

    Shan X Y, Chai L J, Ma J J, et al. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst, 2014, 139: 2322 DOI: 10.1039/C3AN02222F

    [31]

    Hari Krishna S, Karuna Kar N. Boron-doped carbon nanoparticles: size-independent color tunability from red to blue and bioimaging applications. Carbon, 2016, 96: 166 DOI: 10.1016/j.carbon.2015.08.096

    [32]

    Essner J B, Laber C H, Ravula S, et al. Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem, 2016, 18: 243 DOI: 10.1039/C5GC02032H

    [33]

    Consoli G M L, Giuffrida M L, Satriano C, et al. A novel facile one-pot synthesis of photothermally responsive carbon polymer dots as promising drug nanocarriers. Chem Commun, 2022, 58: 3126 DOI: 10.1039/D1CC06530K

    [34]

    Zhu S J, Song Y B, Shao J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed, 2015, 54: 14626 DOI: 10.1002/anie.201504951

    [35]

    Tao S Y, Zhu S J, Feng T L, et al. Crosslink-enhanced emission effect on luminescence in polymers: advances and perspectives. Angew Chem Int Ed, 2020, 59: 9910

    [36]

    Vallan L, Urriolabeitia E P, Ruipérez F, et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J Am Chem Soc, 2018, 140: 12862 DOI: 10.1021/jacs.8b06051

    [37]

    Tao S Y, Lu S Y, Geng Y J, et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed, 2018, 57: 2393 DOI: 10.1002/anie.201712662

    [38]

    Xia C L, Zhu S J, Zhang S T, et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl Mater Interfaces, 2020, 12: 38593 DOI: 10.1021/acsami.0c11867

    [39]

    Liu J J, Geng Y J, Li D W, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater, 2020, 32(17): 1906641 DOI: 10.1002/adma.201906641

    [40]

    Wang B Y, Lu S Y. The light of carbon dots: from mechanism to applications. Matter, 2022, 5: 110 DOI: 10.1016/j.matt.2021.10.016

    [41]

    Ai L, Yang Y S, Wang B Y, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Sci Bull, 2021, 66: 839 DOI: 10.1016/j.scib.2020.12.015

    [42]

    Zhao W M, Bao R, Yi J H, et al. Achieving a better mechanical enhancing effect of carbonized polymer dots than carbon nanotubes and graphene in copper matrix. Compos Commun, 2021, 28: 100906 DOI: 10.1016/j.coco.2021.100906

    [43]

    Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756 DOI: 10.1021/ja062677d

    [44]

    Zhao W M, Bao R, Yi J H, et al. Fabrication of CNT/Cu based composite with twice in-situ formation from powder preparation to sintering. Mater Res Express, 2019, 6: 95088 DOI: 10.1088/2053-1591/ab319d

    [45]

    Li M X, Chen T, Gooding J J, et al. Review of carbon and graphene quantum dots for sensing. ACS Sens, 2019, 4: 1732 DOI: 10.1021/acssensors.9b00514

    [46]

    Chen X, Bai J L, Ma Y S, et al. Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchem J, 2019, 149: 103981 DOI: 10.1016/j.microc.2019.103981

    [47]

    Xiao M, Liu Z G, Xu N X, et al. A smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots-based microarrays. ACS Sens, 2020, 5: 870 DOI: 10.1021/acssensors.0c00219

    [48]

    Li G, Wang F, Liu P, et al. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere, 2018, 197: 526 DOI: 10.1016/j.chemosphere.2018.01.071

    [49]

    Han M, Lu S Y, Qi F, et al. Carbon dots-implanted graphitic carbon nitride nanosheets for photocatalysis: simultaneously manipulating carrier transport in inter- and intralayers. Sol RRL, 2020, 4(4): 2070041 DOI: 10.1002/solr.202070041

    [50]

    Lu Q, Zhang Y J, Liu S Q. Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J Mater Chem A, 2015, 3: 8552 DOI: 10.1039/C5TA00525F

    [51]

    Hao Y C, Dong X L, Wang X Y, et al. Controllable electrostatic self-assembly of sub-3-nm graphene quantum dots incorporated into mesoporous Bi2MoO6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation. J Mater Chem A, 2016, 4: 8298 DOI: 10.1039/C6TA02371A

    [52]

    Yan M, Hua Y Q, Zhu F F, et al. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl Catal B, 2017, 202: 518 DOI: 10.1016/j.apcatb.2016.09.039

    [53]

    Wang S, Li L P, Zhu Z H, et al. Remarkable improvement in photocatalytic performance for tannery wastewater processing via SnS2 modified with N-doped carbon quantum dots: synthesis, characterization, and 4-nitrophenol-aided Cr (VI) photoreduction. Small, 2019, 15: 1804515 DOI: 10.1002/smll.201804515

    [54]

    Cui Y P, Wang T, Liu J Y, et al. Enhanced solar photocatalytic degradation of nitric oxide using graphene quantum dots/bismuth tungstate composite catalysts. Chem Eng J, 2021, 420: 129595 DOI: 10.1016/j.cej.2021.129595

    [55]

    Feng T L, Tao S Y, Yue D, et al. Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small, 2020, 16: 2001295 DOI: 10.1002/smll.202001295

    [56]

    Chen Z P, Mou K W, Wang X H, et al. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew Chem Int Ed, 2018, 130: 12790

    [57]

    Lü K L, Suo W Q, Shao M D, et al. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency. Nano Energy, 2019, 63: 103834 DOI: 10.1016/j.nanoen.2019.06.030

    [58]

    Guo S J, Zhao S Q, Wu X Q, et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat Commun, 2017, 8: 1828 DOI: 10.1038/s41467-017-01893-7

    [59]

    Li W D, Liu Y, Wu M, et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv Mater, 2018, 30: 1800676 DOI: 10.1002/adma.201800676

    [60]

    Hoang V C, Dinh K N, Gomes V G, et al. Iodine doped composite with biomass carbon dots and reduced graphene oxide: a versatile bifunctional electrode for energy storage and oxygen reduction reaction. J Mater Chem A, 2019, 7: 22650 DOI: 10.1039/C9TA05559B

    [61]

    Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005, 308: 1274 DOI: 10.1126/science.1108712

    [62]

    Dang P P, Liu D J, Li G G, et al. Recent advances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs. Adv Opt Mater, 2020, 8: 1901993 DOI: 10.1002/adom.201901993

    [63]

    Miao X, Qu D, Yang D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater, 2018, 30: 1704740 DOI: 10.1002/adma.201704740

    [64]

    Ji C Y, Han Q R, Zhou Y Q, et al. Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon, 2022, 192: 198 DOI: 10.1016/j.carbon.2022.02.054

    [65]

    Zhao W M, Bao R, Yi J H, et al. Influence of carbonized polymer dot (CPD) structure on mechanical and electrical properties of copper matrix composite. Mater Charact, 2021, 181: 111463 DOI: 10.1016/j.matchar.2021.111463

    [66]

    Huang X, Bao R, Yi J H. Improving effect of carbonized quantum dots (CQDs) in pure copper matrix composites. J Cent South Univ, 2021, 28: 1255 DOI: 10.1007/s11771-021-4693-y

    [67]

    Luo H C, Bao R, Ma R F, et al. Preparation and properties of copper matrix composites synergistically strengthened by Al2O3 and CPD. Diamond Relat Mater, 2020, 124: 108916

    [68]

    Zhang L Q, Bao R, Yi J H, et al. Improving the interfacial bonding of CNT/Cu composites using CPD bridges. Mater Sci Eng A, 2022, 845: 143222 DOI: 10.1016/j.msea.2022.143222

    [69]

    Zhao J X, Liu C, Li Y C, et al. Preparation of carbon quantum dots based high photostability luminescent membranes. Luminescence, 2017, 32: 625 DOI: 10.1002/bio.3230

    [70]

    Zhang C, Du L, Liu C, et al. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study. Results Phys, 2016, 6: 767 DOI: 10.1016/j.rinp.2016.10.013

  • 期刊类型引用(6)

    1. 刘博. 油气管道用超声辅助Al_2O_3/Ni-W-Fe化学镀层组织及腐蚀性能. 热加工工艺. 2024(21): 150-153+149 . 百度学术
    2. 王林静,李可鑫,周若男,肖雪莲,王方明,郝开元,赵晨辰,张国田,常可可. 苛刻环境用金属基复合材料表面性能研究进展. 中国表面工程. 2024(06): 44-63 . 百度学术
    3. 吴深,刘洪坤,管英杰,司屈钒,樊江磊,刘建秀. C/hBN润滑组元对铜基粉末冶金摩擦材料性能的影响. 有色金属工程. 2023(01): 38-47 . 百度学术
    4. 邹芹,王鹏,徐江波,李艳国. 金属基自润滑复合材料固体润滑剂研究进展. 燕山大学学报. 2023(05): 398-410 . 百度学术
    5. 郭小汝,陈百明. 石墨含量对镍基材料摩擦磨损性能影响. 兰州工业学院学报. 2020(05): 77-80 . 百度学术
    6. 金顶,周晨,陶帝豪,喻志强,章桥新. 热处理对激光熔覆Inconel 625涂层摩擦学性能的影响. 武汉理工大学学报. 2019(07): 87-94 . 百度学术

    其他类型引用(1)

图(7)  /  表(1)
计量
  • 文章访问数:  2035
  • HTML全文浏览量:  317
  • PDF下载量:  63
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-06-07
  • 录用日期:  2022-06-07
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2022-10-27

目录

/

返回文章
返回