高级检索

热等静压制备粉末高温合金原始颗粒边界研究现状

黄西娜, 郭斯蕊, 岳文, 翟月雯, 王成彪

黄西娜, 郭斯蕊, 岳文, 翟月雯, 王成彪. 热等静压制备粉末高温合金原始颗粒边界研究现状[J]. 粉末冶金技术, 2023, 41(5): 402-409, 419. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060005
引用本文: 黄西娜, 郭斯蕊, 岳文, 翟月雯, 王成彪. 热等静压制备粉末高温合金原始颗粒边界研究现状[J]. 粉末冶金技术, 2023, 41(5): 402-409, 419. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060005
HUANG Xina, GUO Sirui, YUE Wen, ZHAI Yuewen, WANG Chengbiao. Research status of prior particle boundaries for powder superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2023, 41(5): 402-409, 419. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060005
Citation: HUANG Xina, GUO Sirui, YUE Wen, ZHAI Yuewen, WANG Chengbiao. Research status of prior particle boundaries for powder superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2023, 41(5): 402-409, 419. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060005

热等静压制备粉末高温合金原始颗粒边界研究现状

基金项目: 国家自然科学基金青年科学基金资助项目(42102345);中央高校基本科研业务费专项资金资助项目(2022XJJD01)
详细信息
    通讯作者:

    黄西娜: E-mail: huangxina@126.com

  • 中图分类号: TF125

Research status of prior particle boundaries for powder superalloy prepared by hot isostatic pressing

More Information
  • 摘要:

    粉末高温合金作为先进高温材料被广泛应用于航空航天领域。热等静压(hot isostatic pressing,HIP)是粉末高温合金构件的制备方法之一,但是原始颗粒边界(prior particle boundaries,PPBs)的存在会极大的影响构件的性能。本文综述了热等静压制备粉末高温合金原始颗粒边界的研究现状,概述了原始颗粒边界的形成机理及其影响,总结了粉末高温合金中原始颗粒边界的消除方法,并对这些方法应用的可行性及有效性进行了分析和展望。原始颗粒边界的消除方法主要包括向粉末添加Hf、Nb等强碳化物形成元素,对粉末进行预热处理,真空动态脱气处理或等离子体滴凝处理;优化粉末制备工艺,选用纯度更高、尺寸分布更均匀的粉末;选用合适的热等静压工艺参数和工艺方式;对制件采取热挤压、退火、固溶处理和热等静压后处理等。

    Abstract:

    Powder metallurgy superalloy is an advanced high-temperature material, which has been widely used in the aerospace fields. Hot isostatic pressing (HIP) is one of the preparation methods for powder superalloy components. However, the presence of prior particle boundaries (PPBs) adversely affects the performance of the components significantly. The research status of PPBs for powder metallurgy superalloys prepared by HIP was reviewed in this paper, the formation mechanism and influence of PPBs in components were summarized, the removal PPBs methods in powder superalloys were proposed, and the feasibility and effectiveness of these methods were analyzed and prospected, including adding Hf, Nb, and other strong carbide forming elements to the powder, preheating the powder, using the vacuum dynamic degassing treatment or plasma droplet re-fining (PDR) treatment, optimizing the powder preparation process, selecting powders with higher purity and more uniform size distribution, selecting the appropriate HIP process parameters and methods, and applying hot extrusion, annealing, solution treatment and HIP post-treatment on the components.

  • 电容器级钽丝是用于制作钽电解电容器的阳极引线,其优点是钽丝的表面氧化膜介电常数大,可靠性高。电容器级钽丝是以钽粉为原料,利用粉末冶金方法烧结成钽条后,再经轧制、拉拔等金属塑性加工手段制成的,其重要性能指标包括抗拉强度、直线度、化学成分组成和漏电流等。近几年,随着钽电解电容器向小型化和耐高压方向发展,钽丝的生产工艺也在不断完善和更新;在稳定力学性能、化学成分和电性能的前提下,要提高钽丝的直线度,保证电容器成形过程中钽丝不弯曲,从而提高电容器的可靠性[1]

    众所周知,在拉拔过程中,随着加工量的增加,不论是钽丝还是其他材料的线材都会因为抵抗变形而产生大量的残余应力,导致线材的直线度变差。钽电解电容器对其阳极引线—钽丝的直线度要求很高,所以需要通过一种矫直的方法来均匀或消除这种残余应力。目前,在硬态钽丝的生产中采用拉弯矫直的原理[2],依靠矫直机两辊(中间内凹,双曲线辊)的角度变化对钽丝进行反复弯曲,使钽丝的残余应力均匀的分布在钽丝内部组织中,从而达到矫直的目的。常用的矫直方法还有热应力矫直方法,即通过连续走线的方式,将钽丝置于高温环境中,利用再结晶消除钽丝内部的残余应力[3]。钽丝之所以弯曲,是因为在拉拔过程中受到拉应力和压应力,两种力的作用大小不一而形成的;热应力矫直法是在放线张力和高温的作用下,消除钽丝中原有的拉应力和压应力,使弯曲的钽丝完全变直的过程。矫直后的钽丝在放线张力下绕在一定曲率半径的绕线盘上,绕线盘的曲率半径对钽丝的直线度影响很大,尤其对退火态钽丝的直线度影响更大。采用高温连续走线退火方法生产钽丝,钽丝微观组织细小、均匀,是生产高性能和直线度良好电容器级钽丝的有效工艺。本文通过优化连续退火工艺和矫直收线工艺来改善钽丝的直线度,从而提高钽丝的适用性。

    根据用户对钽丝耐高温性能要求的不同,以掺杂或非掺杂钽粉为原料,采用粉末冶金法生产具有耐高温性能的钽丝。在钽粉中掺杂可提高钽丝再结晶退火温度,细化钽丝晶粒度,提高钽丝强度,增加钽丝的抗变形能力[4]

    不同直线度的非掺杂钽丝(直径为0.8 mm)再结晶组织如图 1图 2所示。从再结晶钽丝的晶粒度分析,直线度好的钽丝晶粒细小,没有出现晶粒长大的情况,说明退火不完全,没有将金属内部的残余应力完全消除。由于晶粒之间存在一定的变形抗力,在1800 ℃高温条件下退火,钽丝内部晶粒出现再结晶,晶粒明显细化且很均匀,说明晶粒之间存在的变形应力被完全消除,钽丝的直线度较好,退火后钽丝产品的抗拉强度较小。

    图  1  直线度为4/100钽丝晶粒度
    Figure  1.  Grain size of the tantalum wire with the straightness of 4/100
    图  2  直线度为0.4/100钽丝晶粒度
    Figure  2.  Grain size of the tantalum wire with the straightness of 0.4/100

    采用掺杂(钇、硅)[5]钽粉制备钽丝,可在钽丝高温退火过程中细化钽丝组织晶粒度,起到细晶韧化、固溶强化和弥散强化的作用[6],使钽丝具有更好的室温力学性能、漏电流、烧结折丝及抗氧脆性性能,因此在生产耐高温有机电容器中被普遍使用。在原料钽粉中掺杂钇制备钽丝,研究钽丝在高温退火后的直线度。

    图 3图 4所示为掺杂钇元素和非掺杂钽丝的显微组织晶粒度。由图可知,在相同退火条件下,掺杂钽丝的晶粒细小、均匀,非掺杂钽丝的晶粒粗大、不均匀。这表明掺杂钽丝的结晶程度不如非掺杂钽丝,这是因为钽丝中掺杂的钇元素均匀镶嵌在钽晶界上,抑制了钽晶粒的长大和回复,无法将残留在晶界上的残余应力消除干净[7]。为了完全消除掺杂钽丝中的残余应力,建议将高温连续退火温度控制在1650~1900 ℃,走线速度控制在10~40 m·min-1。晶界上的钇元素含量随着温度的升高逐渐降低,金属的抗拉强度也会逐渐降低,从而达到回复的目的。掺杂后的钽丝经过高温退火能有效提高其再结晶度,使退火后钽丝的直线度得到显著改善。

    图  3  0.8 mm掺杂钇元素钽丝的晶粒度
    Figure  3.  Grain size of the tantalum wire doping by yttrium element in the diameter of 0.8 mm
    图  4  0.8 mm非掺杂钽丝的晶粒度
    Figure  4.  Grain size of the tantalum wire without doping in the diameter of 0.8 mm

    在相同退火条件下,掺杂和非掺杂钽丝的直线度如表 1所示。由表可知,在高温连续退火后,掺杂和非掺杂钽丝直线度的标准偏差分别为0.24和0.23,没有明显差异;经精绕密排后,掺杂钽丝直线度的标准偏差为0.16,非掺杂钽丝直线度的标准偏差为0.36,掺杂钽丝直线度的变化比非掺杂钽丝要小的多,其稳定性好。在相同退火条件下,虽然掺杂钽丝的再结晶过程已经形成,但晶粒大小远不及非掺杂钽丝晶粒的粗大,因此晶粒与晶界之间的应力相应也较大,相对抵制塑性变形的能力也较大。因此,在精绕密排过程中,掺杂钽丝即便发生一定的塑性变形,也没有非掺杂钽丝那么明显,掺杂钽丝的直线度明显好于非掺杂钽丝[8]。为满足轧制片式钽电解电容器阳极引线的要求,阳极引线优先选用掺杂的钽丝。

    表  1  掺杂和非掺杂钽丝(0.8 mm)直线度
    Table  1.  Straightness of the tantalum wires (0.8 mm) with and without doping
    次数 掺杂钽丝直线度,x/100 非掺杂钽丝直线度,x/100
    连续退火后 产品精绕密排 连续退火后 产品精绕密排
    第一次 0.80/100 1.70/100 0.80/100 2.80/100
    第二次 1.00/100 1.70/100 1.00/100 2.40/100
    第三次 1.40/100 1.50/100 1.20/100 3.10/100
    第四次 0.80/100 1.30/100 0.80/100 2.20/100
    第五次 0.80/100 1.50/100 0.60/100 2.40/100
    第六次 0.80/100 1.40/100 0.60/100 2.20/100
    均值 0.93/100 1.52/100 0.83/100 2.52/100
    标准差 0.24/100 0.16/100 0.23/100 0.36/100
    下载: 导出CSV 
    | 显示表格

    选用同批次ϕ0.6 mm掺杂钽丝。在高温连续退火前,对部分钽丝进行矫直,对另外一部分钽丝未进行矫直,两种钽丝经高温退火后直线度的对比试验结果如表 2所示[9]。从表 2可以看出,退火前钽丝的直线度对退火后钽丝的直线度有显著影响,这是因为走线式连续退火不可能将钽丝的残余内应力完全消除,退火后钽丝发生的塑性变形是不完全的,丝材弯曲一侧的压应力和另一侧的拉应力没有被完全消除[10]。在高温退火前对钽丝进行一次热应力矫直过程,均衡了弯曲两侧的拉应力和压应力,使得丝材的直线度变得均匀可控。

    表  2  退火前钽丝直线度对退火后钽丝直线度的影响
    Table  2.  Effect of the tantalum wire straightening before annealing on the tantalum wire straightening after annealing
    工艺 钽丝直线度,x/100
    退火前矫直 退火前未矫直
    退火前 3.00/100 6.00/100
    退火后 2.00/100 3.50/100
    均值 2.50/100 4.75/100
    标准差 0.71/100 1.77/100
    下载: 导出CSV 
    | 显示表格

    选用同批次ϕ0.8 mm掺杂钽丝,在高温连续退火过程中(温度1650~1900 ℃,走线速度10~40 m·min-1),采用不同放线张力(0.5 kg和0.9kg)进行试验,退火后钽丝的直线度如图 5所示。由图可知,随着张力的增大,退火后钽丝的直线度在逐渐变好,由原来最大5.0/100变为最小0.8/100。这是因为钽丝在连续走线式退火过程中,张力的增大给直线度差的钽丝一个拉应力和一个压应力,这种拉应力、压应力越大,在高温再结晶回复越明显[11]。但是这种拉应力、压应力不可能无限制增加,在钽丝不发生塑性变形的前提下,可以提高拉应力、压应力,否则钽丝在高温下极易发生塑性变形[12],从而在宏观上表现为钽丝变细。通过试验发现,当钽丝直径大于ϕ0.6 mm时,张力增加到0.9 kg对钽丝直径影响不大。

    图  5  退火放线张力对钽丝直线度的影响
    Figure  5.  Effect of the payoff tension on the straightness of tantalum wire during annealing

    走线式连续退火炉因为是连续走线,钽丝在出炉口时温度很高,在出炉后经过出炉口定位轮时,由于走线方向发生一定角度的转向,此时定位轮会给钽丝施加一定的外力(F,如式(1)所示),这种外力极易让钽丝发生塑性变形,从而影响钽丝直线度。为了减少这种外力,唯一可以改变的是增大定位轮的直径。由向心力公式(式(2))可知,增加定位轮直径,可以减小定位轮转动产生的向心力(F)[13]

    $$ F_{\text {外 }}=F_{\text {向 }} $$ (1)
    $$ F_{\text {向 }}=M v^{2} / R $$ (2)

    式中:F为定位轮给钽丝施加的外力;F为定位轮转动产生的向心力;R为定位轮直径;M为定位轮质量;v为定位轮转速。

    选用同批次ϕ0.8 mm掺杂钽丝,通过将连续退火出炉口定位轮直径由原来的220 mm增加到300 mm,在速度v不变的情况下,减少外力F的方法进行试验,改进钽丝的直线度,结果如表 3所示。从表可知,经过增加连续退火出炉口定位轮直径后,钽丝的直线度得到明显改善。

    表  3  续退火出炉口定位轮直径对退火后钽丝直线度的影响
    Table  3.  Effect of the wheel diameter of tap hole on the straightness of tantalum wire after annealing
    导轮直径/ mm 钽丝直线度,x/100
    220 2.4/100
    300 0.8/100
    下载: 导出CSV 
    | 显示表格

    通常钽丝经过高温退火后,收线排列比较松散,需要对钽丝进行精绕密排,防止钽丝发生松丝、乱丝的现象,在存储、搬运和使用过程中影响钽丝的直线度。选用同批次ϕ0.8 mm掺杂钽丝,采用直径不同的收线盘进行精绕密排试验,在相同的精绕密排工艺条件下,钽丝的直线度如表 4所示。从表 4可以看出,对于密排前直线度相同的钽丝,在相同的精绕密排工艺条件下,密排到直径不同的收线盘上,测试出的钽丝直线度有明显的差距,随着收线盘直径的增大,其直线度变好。通常钽丝的精绕密排过程是需要一定的张力,这种张力情况与前面提到的退火收线一样,对钽丝也会造成一定的塑性变形,塑性变形在弹性变形范围之内发生,一定程度上会有回复,但塑性变形发生在弹性变形范围之外,就会产生永久性变形,从而影响钽丝的直线度。

    表  4  矫直收线盘直径的大小对钽丝直线度的影响
    Table  4.  Effect of the straightening coil diameter on the straightness of tantalum wire
    精绕收线盘直径/ mm 钽丝直线度,x/100
    密排前 密排后
    230 1.2/100 2.4/100
    300 1.2/100 1.3/100
    下载: 导出CSV 
    | 显示表格

    (1) 通过高温连续退火,掺杂钽丝的晶粒比非掺杂钽丝晶粒小且更加均匀,晶粒与晶界之间的应力也相应较大,抵制塑性变形的能力也较大,掺杂钽丝的直线度明显好于非掺杂钽丝。为满足轧制片式钽电解电容器阳极引线的要求,阳极引线优先选用掺杂的钽丝。

    (2) 钽丝退火前的直线度极大影响着退火后产品的直线度,因此在退火前必须进行去应力矫直过程。

    (3) 走线式连续退火的放线张力对钽丝直线度有一定的影响,张力越大,直线度越好,但不能无限增加,否则钽丝直径会发生变化。

    (4) 连续退火出炉口定位轮直径越大,钽丝的直线度越好;矫直收线盘的直径越大,钽丝的直线度越好。

  • 图  1   PPBs形成机理示意图[12]

    Figure  1.   Schematic diagram of the PPBs formation mechanism[12]

    图  2   PPBs评级标准[19]:(a)1级;(b)2级;(c)3级;(d)4级

    Figure  2.   PPBs rating standards[19]: (a) level 1; (b) level 2; (c) level 3; (d) level 4

    图  3   添加不同Ta质量分数的FGH4098粉末颗粒表面和内部碳化物显微形貌[21]:(a)0% Ta,粉末颗粒表面;(b)0% Ta,粉末内部碳化物;(c)2.4% Ta,粉末颗粒表面;(d)2.4% Ta,粉末内部碳化物

    Figure  3.   SEM images of the particle surfaces and internal carbides in FGH4098 powders with different Ta mass fraction[21]: (a) particle surface without Ta; (b) internal carbides without Ta; (c) particle surface with 2.4% Ta; (d) internal carbides with 2.4% Ta

    图  4   添加不同质量分数Ta的FGH4098粉末能谱分析[21]:(a)0%;(b)2.4%

    Figure  4.   Energy spectrum analysis of the FGH4098 powders with different Ta mass fraction[21]: (a) 0%; (b) 2.4%

    图  5   等离子体滴凝技术原理示意图[24]

    Figure  5.   Schematic diagram of the PDR principle[24]

    图  6   热挤压前后合金微观组织[43]:(a)热挤压前,低倍;(b)热挤压前,高倍;(c)热挤压后,横向低倍;(d)热挤压后,横向高倍;(e)热挤压后,纵向低倍;(f)热挤压后,纵向高倍

    Figure  6.   Microstructures of the alloys before and after hot extrusion[43]: (a) before hot extrusion, low magnification; (b) before hot extrusion, high magnification; (c) after hot extrusion, transverse low magnification; (d) after hot extrusion, transverse high magnification; (e) after hot extrusion, vertical high magnification (f) after hot extrusion, vertical high magnification

    图  7   热等静压后处理前后粉末微观组织[47]:(a)热等静压后处理前显微形貌;(b)热等静压后处理后显微形貌;(c)热等静压后处理前光学显微形貌;(d)热等静压后处理后光学显微形貌

    Figure  7.   Powder microstructures before and after HIPPT[47]: (a) SEM image before HIPPT; (b) SEM image after HIPPT; (c) OM image before HIPPT; (d) OM image after HIPPT

  • [1] 张义文, 刘建涛. 粉末高温合金研究进展. 中国材料进展, 2013, 32(1): 1

    Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Progr Chin Mater, 2013, 32(1): 1

    [2] 徐磊, 郭瑞鹏, 吴杰, 等. 钛合金粉末热等静压近净成形研究进展. 金属学报(中文版), 2018, 54(11): 1537

    Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder. Acta Metall Sin, 2018, 54(11): 1537

    [3] 季晨昊, 郎利辉, 黄西娜, 等. Ti6Al4V合金粉末高温高压成形过程中粉固界面及其耦合变形研究. 中南大学学报(自然科学版), 2019, 50(1): 29

    Ji C H, Lang L H, Huang X N, et al. Research on powder-solid interface and coupling deformation of Ti6Al4V alloy powder during high temperature and high pressure. J Central South Univ(Sci Technol), 2019, 50(1): 29

    [4] 杨金龙, 朱晓闽, 谭建均, 等. 氩气雾化制粉FGH97高温合金的组织和性能. 稀有金属材料与工程, 2019, 48(12): 4093

    Yang J L, Zhu X M, Tan J J, et al. Microstructure and properties of argon atomization FGH97 P/M superalloy. Rare Met Mater Eng, 2019, 48(12): 4093

    [5] 周静怡, 刘昌奎, 赵文侠, 等. 粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究. 航空材料学报, 2017, 37(5): 83 DOI: 10.11868/j.issn.1005-5053.2016.000130

    Zhou J Y, Liu C K, Zhao W X, et al. Prior particle boundary of PM FGH96 superalloy and its in-situ high-cycle fatigue at elevated temperature. J Aeron Mater, 2017, 37(5): 83 DOI: 10.11868/j.issn.1005-5053.2016.000130

    [6]

    Crompton J S, Hertzberg R W. Analysis of second phase particles in a powder metallurgy HIP nickel-base superalloy. J Mater Sci, 1986, 21(10): 3445 DOI: 10.1007/BF02402986

    [7] 刘丽玉, 陶春虎, 刘昌奎, 等. 发动机粉末合金高压涡轮盘断裂的原因. 机械工程材料, 2014, 38(8): 108

    Liu L Y, Tao C H, Liu C K, et al. Fracture causes of powder metallurgy high pressure turbine disk of an engine. Mater Mechan Eng, 2014, 38(8): 108

    [8] 赵军普, 陶宇, 袁守谦, 等. 粉末冶金高温合金中的原始颗粒边界(PPB)问题. 粉末冶金工业, 2010, 20(4): 43

    Zhao J P, Tao Y, Yuan S Q, et al. The problem of prior particle boundary precipitation in P/M superalloys. Powder Metall Ind, 2010, 20(4): 43

    [9] 毛健, 俞克兰, 周瑞发. 粉末预热处理对热等静压Rene’95粉末高温合金组织的影响. 粉末冶金技术, 1989, 7(4): 213

    Mao J, Yu K L, Zhou R F. Effect of pre-heat treatment on P/M Rene’95 superalloy microstructure. Powder Metall Technol, 1989, 7(4): 213

    [10] 马文斌, 刘国权, 胡本芙, 等. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理. 金属学报, 2013, 49(10): 1248 DOI: 10.3724/SP.J.1037.2013.00125

    Ma W B, Liu G Q, Hu B F, et al. Formation of previous particle boundary of nickel base PM superalloy FGH96. Acta Metall Sin, 2013, 49(10): 1248 DOI: 10.3724/SP.J.1037.2013.00125

    [11]

    Qiu C L, Yang D L, Wang G Q, et al. Microstructural development and tensile behavior of a hot isostatically pressed nickel-based superalloy. Mater Sci Eng, 2020, 769: 138461 DOI: 10.1016/j.msea.2019.138461

    [12]

    Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys. J Powder Metall Min, 2015, 4(2): 1

    [13] 赵军普. FGH96粉末高温合金原始颗粒边界(PPB)问题的研究[学位论文]. 西安: 西安建筑科技大学, 2010

    Zhao J P. Study on Prior Particle Boundary (PPB) Precipitation in P/M Superalloy FGH96 [Dissertation]. Xi’an: Xi’an University of Architecture and Technology, 2010

    [14]

    Sreenu B, Sarkar R, Kumar S S, et al. Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Mater Sci Eng:A, 2020, 797: 1

    [15]

    Chang L T, Jin H. A mechanistic study for the fracture mode and ductility variation in a powder metallurgy superalloy hot-isostatic-pressed at sub- and super-solvus temperatures. Mater Sci Eng:A, 2019, 743: 733 DOI: 10.1016/j.msea.2018.11.144

    [16] 张梦迪, 刘建涛, 张义文, 等. 消除粉末高温合金中原始颗粒边界机制. 粉末冶金工业, 2021, 31(2): 41

    Zhang M D, Liu J T, Zhang Y W, et al. Discussion on mechanism of eliminating prior particle boundary in powder metallurgy superalloy. Powder Metall Ind, 2021, 31(2): 41

    [17] 张莹, 张义文, 孙志坤, 等. PPB对镍基粉末高温合金裂纹扩展行为的影响. 稀有金属材料与工程, 2019, 48(10): 3282

    Zhang Y, Zhang Y W, Sun Z K, et al. Influence of PPB on fatigue crack growth rate of PM Ni-based superalloy. Rare Metal Mater Eng, 2019, 48(10): 3282

    [18] 格辛格. 粉末高温合金. 1版. 张义文译. 北京: 冶金工业出版社, 2017

    Gessinger G H. Powder Metallurgy of Superalloys. 1st Ed. Zhang Y W transl. Beijing: Metallurgical Industry Press, 2017

    [19]

    Ingesten N G, Warren R, Winberg L. The Nature and Origin of Previous Particle Boundary Precipitates in P/M Superalloys. Berlin: Springer Netherlands press, 1982

    [20] 杨福宝, 景艳红, 李丹, 等. 热等静压及后续热处理对MIM418涡轮合金组织与性能的影响. 材料热处理学报, 2015, 36(增刊1): 128

    Yang F B, Jing Y H, Li D, et al. Influence of hot isostatic pressing and the subsequent heat treatment on microstructure and properties of MIM418 turbine alloy. Trans Mater Heat Treat, 2015, 36(Suppl 1): 128

    [21] 张梦迪, 刘建涛, 张义文, 等. 粉末高温合金原始颗粒边界与MC型碳化物溶解度的关系. 材料热处理学报, 2021, 42(5): 50

    Zhang M D, Liu J T, Zhang Y W, et al. Relationship between prior particle boundary of powder metallurgy superalloy and solubility of MC carbides. Trans Mater Heat Treat, 2021, 42(5): 50

    [22]

    Liu Y F, Li Z, Liu N, et al. Effect of oxygen content of powders on previous particle boundaries in hot isostatic pressed TiAl alloy // High Performance Structural Materials. Singapore, 2018: 779

    [23] 王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142

    Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142

    [24]

    Kuo Y L, Kakehi K. Effect of the prior particle boundary on the microstructure and mechanical properties of hot-isostatic-pressed IN718 alloy. Mater Trans, 2017, 58(7): 1042 DOI: 10.2320/matertrans.M2017045

    [25]

    Zhao L, Zhang X H, Deng T Q, et al. Develop an effective oxygen removal method for copper powder. Adv Powder Technol, 2018, 29(8): 1904 DOI: 10.1016/j.apt.2018.05.001

    [26] 韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状. 中国材料进展, 2014, 33(12): 748

    Han Z Y, Zeng G, Liang S J, et al. Development in powder production technology of Ni-based superalloy. Mater China, 2014, 33(12): 748

    [27] 侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131

    Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131

    [28] 何国爱, 丁晗晖, 刘琛仄, 等. 粉末特性对镍基粉末冶金高温合金组织及热变形行为的影响. 中国有色金属学报, 2016, 26(1): 37

    He G A, Ding H H, Liu C Z, et al. Effects of powder characteristics on microstructure and deformation activation energy of nickel based superalloy. Chin J Nonferrous Met, 2016, 26(1): 37

    [29] 谭建均, 杨金龙, 龙安平, 等. 制粉方式对FGH97合金组织和低周疲劳性能的影响. 稀有金属, 2019, 43(1): 52

    Tan J J, Yang J L, Long A P, et al. Microstructure and low cycle fatigue property of FGH97 alloy with different atomization methods. Chin J Rare Met, 2019, 43(1): 52

    [30]

    Sergi A, Khan R H U, Attallah M M. The role of powder atomisation route on the microstructure and mechanical properties of hot isostatically pressed Inconel 625. Mater Sci Eng:A, 2021, 808: 140950 DOI: 10.1016/j.msea.2021.140950

    [31]

    Irukuvarghula S, Hassanin H, Cayron C, et al. Evolution of grain boundary network topology in 316L austenitic stainless steel during powder hot isostatic pressing. Acta Mater, 2017, 133(17): 269

    [32]

    Irukuvarghula S, Hassanin H, Cayron C, et al. Effect of powder characteristics and oxygen content on modifications to the microstructural topology during hot isostatic pressing of an austenitic steel. Acta Mater, 2019, 172: 6 DOI: 10.1016/j.actamat.2019.03.038

    [33] 张佳庆. FGH96合金原始粉末颗粒边界形成机理及演化规律研究[学位论文]. 太原: 中北大学, 2017

    Zhang Jiaqing. Study on Formation Mechanism and Evolution Law of FGH96 Alloy Original Powder Particle Boundary [Dissertation]. Taiyuan: North University of China, 2017

    [34]

    Tan L M, He G A, Liu F, et al. Effects of temperature and pressure of hot isostatic pressing on the grain structure of powder metallurgy superalloy. Materials, 2018, 11(2): 328 DOI: 10.3390/ma11020328

    [35] 谢君, 田素贵, 周晓明, 等. FGH95镍基合金组织结构对持久性能的影响. 中南大学学报(自然科学版), 2012, 43(7): 2547

    Xie J, Tian S G, Zhou X M, et al. Effect of microstructure of FGH95 nickel-based alloy on durability properties. J Central South Univ(Sci Technol), 2012, 43(7): 2547

    [36]

    Teng Q, Wei Q S, Xue P J, et al. Effects of processing temperatures on FGH4097 superalloy fabricated by hot isostatic pressing: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng, 2019, 739: 118 DOI: 10.1016/j.msea.2018.08.030

    [37] 黄俊, 薛鹏举, 蔡超, 等. 两种热等静压工艺对Ti6Al4V合金力学性能影响的研究. 稀有金属, 2016, 40(2): 97

    Huang J, Xue P J, Cai C, et al. Mechanical properties of Ti6Al4V alloy prepared by two different hot isostatic pressing processes. Chin J Rare Met, 2016, 40(2): 97

    [38]

    Cai C, Pan K K, Teng Q, et al. Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy. Mater Sci Eng:A, 2019, 760: 19 DOI: 10.1016/j.msea.2019.05.081

    [39]

    Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries. Mater Sci Eng A, 2017, 682: 341 DOI: 10.1016/j.msea.2016.11.031

    [40]

    Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng A, 2006, 435: 84

    [41] 刘趁意, 王淑云, 李付国, 等. 粉末高温合金挤压变形组织及变形机理研究. 锻压装备与制造技术, 2009, 44(1): 84 DOI: 10.3969/j.issn.1672-0121.2009.01.031

    Liu C Y, Wang S Y, Li F G, et al. The procedure and mechanics research of extrusion deformation for FGH96 alloy. Forg Equip Manufact Technol, 2009, 44(1): 84 DOI: 10.3969/j.issn.1672-0121.2009.01.031

    [42] 秦子珺, 刘琛仄, 王子, 等. 镍基粉末高温合金原始颗粒边界形成及组织演化特征. 中国有色金属学报, 2016, 26(1): 50 DOI: 10.19476/j.ysxb.1004.0609.2016.01.007

    Qin Z J, Liu C Z, Wang Z, et al. Formation and microstructure evolution of precipitation on prior particle boundaries in P/M nickel-base superalloys. Chin J Nonferrous Met, 2016, 26(1): 50 DOI: 10.19476/j.ysxb.1004.0609.2016.01.007

    [43] 何国爱, 杨川, 刘锋, 等. 热挤压对粉末冶金PM-0002镍基高温合金组织及热变形行为的影响. 机械工程材料, 2016, 40(4): 65

    He G A, Yang C, Liu F, et al. Effects of hot extrusion on microstructures and hot deformation behavior of powder metallurgy Ni-base superalloy PM-0002. Mater Mech Eng, 2016, 40(4): 65

    [44] 傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201

    Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201

    [45]

    Higashi M, Kanno N. Evaluation of hot workability of powder metallurgy Ni-based superalloy with different initial microstructures. Metall Mater Trans A, 2020, 52(1): 1

    [46] 宋富阳, 张剑, 郭会明, 等. 热等静压技术在镍基铸造高温合金领域的应用研究. 材料工程, 2021, 49(1): 65 DOI: 10.11868/j.issn.1001-4381.2020.000396

    Song F Y, Zhang J, Guo H M, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys. J Mater Eng, 2021, 49(1): 65 DOI: 10.11868/j.issn.1001-4381.2020.000396

    [47]

    Huang X N, Lang L H, Wang G. Effect of HIP post-treatment on the HIPed Ti6Al4V powder compacts. Powder Metall, 2019, 62(1): 8 DOI: 10.1080/00325899.2018.1534425

图(7)
计量
  • 文章访问数:  2272
  • HTML全文浏览量:  228
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 网络出版日期:  2022-08-18
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回