Abstract:
The friction and wear properties of the TC4 titanium alloy wire under the dry friction conditions were studied. The influence of load (
F) and friction speed (
V) on the friction coefficient and wear rate of the TC4 wire was investigated. The scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to observe and analyze the surface morphology, element composition, and phase component of the TC4 wire worn surface, and the wear mechanism was discussed. The results show that, when the sliding speed is the same, as the load increases, the friction coefficient increases first and then decreases, and the wear rate continues to increase. When the load is constant, the sliding speed is negatively correlated with the friction coefficient and positively correlated with the wear rate. For the TC4 wear mechanism, the oxidative wear and abrasive wear mainly occur under the low load and low speed, the oxidative wear and adhesive wear mainly occur under the medium load and medium speed, the abrasive wear mainly occurs at high load, while the oxidative wear occurs at high speed. The friction coefficient first decreases and then increases with the increase of
F∙V value, and the wear rate is positively correlated with
F∙V value.