高级检索

TC4钛合金细丝摩擦磨损性能研究

张志文, 董秀萍, 黄明吉, 乔小溪

张志文, 董秀萍, 黄明吉, 乔小溪. TC4钛合金细丝摩擦磨损性能研究[J]. 粉末冶金技术, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009
引用本文: 张志文, 董秀萍, 黄明吉, 乔小溪. TC4钛合金细丝摩擦磨损性能研究[J]. 粉末冶金技术, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009
ZHANG Zhiwen, DONG Xiuping, HUANG Mingji, Qiao Xiaoxi. Study on friction and wear properties of TC4 titanium alloy wire[J]. Powder Metallurgy Technology, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009
Citation: ZHANG Zhiwen, DONG Xiuping, HUANG Mingji, Qiao Xiaoxi. Study on friction and wear properties of TC4 titanium alloy wire[J]. Powder Metallurgy Technology, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009

TC4钛合金细丝摩擦磨损性能研究

详细信息
    通讯作者:

    董秀萍: E-mail: dongxp@th.btbu.edu.cn

  • 中图分类号: TG135+.7

Study on friction and wear properties of TC4 titanium alloy wire

More Information
  • 摘要:

    选用不同载荷(F)和摩擦速度(V)进行正交对比实验,研究TC4钛合金金属丝在干摩擦条件下的摩擦磨损性能,得出载荷和摩擦速度与TC4细丝摩擦系数和磨损率间的相关规律。采用扫描电子显微镜和能谱仪观察并分析了TC4细丝表面磨损形貌、元素种类及物相组成,并讨论了TC4细丝的磨损机制。结果表明:在摩擦速度相同时,载荷增大,摩擦系数先增大后减小,磨损率则持续增大;当载荷不变时,摩擦速度与摩擦系数呈负相关,与磨损率呈正相关。在TC4磨损机制中,氧化磨损和磨粒磨损主要出现在低载荷和低速情况下,氧化磨损和粘着磨损主要出现在中载荷和中速情况下,磨粒磨损主要出现在高载荷情况下,而氧化磨损则出现在高速下。随FV值增大,摩擦系数先减小后增大,磨损率与FV值呈正相关。

    Abstract:

    The friction and wear properties of the TC4 titanium alloy wire under the dry friction conditions were studied. The influence of load (F) and friction speed (V) on the friction coefficient and wear rate of the TC4 wire was investigated. The scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to observe and analyze the surface morphology, element composition, and phase component of the TC4 wire worn surface, and the wear mechanism was discussed. The results show that, when the sliding speed is the same, as the load increases, the friction coefficient increases first and then decreases, and the wear rate continues to increase. When the load is constant, the sliding speed is negatively correlated with the friction coefficient and positively correlated with the wear rate. For the TC4 wear mechanism, the oxidative wear and abrasive wear mainly occur under the low load and low speed, the oxidative wear and adhesive wear mainly occur under the medium load and medium speed, the abrasive wear mainly occurs at high load, while the oxidative wear occurs at high speed. The friction coefficient first decreases and then increases with the increase of F∙V value, and the wear rate is positively correlated with F∙V value.

  • 锆酸钙材料(CaZrO3)具有优秀的抗水化性能、高熔点及良好的抗热震性能[1-5],拥有广阔的应用前景,由于自然界中不存在天然的CaZrO3,研究锆酸钙材料的合成就显得非常必要。制备CaZrO3的方法主要包括高温固相反应法、共沉淀法、溶胶-凝胶法、燃烧法和水热法等[6-8],高温固相法由于工艺简单、生产成本较低和生产量大等优点被人们广泛使用,但这种方法存在烧结温度高、制备锆酸钙致密性差等缺点。为了解决这些问题,研究者们在制备锆酸钙材料过程中向物系添加少量稀土氧化物、Al2O3、SiO2、CuO等添加剂,用于促进锆酸钙在低温下的烧结致密化;这些添加剂虽然可以起到促进锆酸钙材料烧结致密性的作用[9-11],但也会带来外来物质,降低CaZrO3高温使用性能。

    CaCO3作为制备CaZrO3的添加剂在高温下分解生成CaO,不会对CaZrO3产生污染;同时,由于CaCO3和制备原料Ca(OH)2分解温度不同,产生CaO晶体顺序不同,可以对CaO晶体质点的扩散产生影响。故本文考虑向锆酸钙材料中添加少量CaCO3微粉,利用分解温度不同,生成CaO晶体顺序不同,促进CaZrO3烧结致密性,降低锆酸钙烧结温度。

    以天津市科密欧化学试剂有限公司生产的分析纯Ca(OH)2和天津市光复精细化工研究生产的m-ZrO2为主要原料(平均粒度为7.4 μm和4.5 μm,纯度大于99%),实验中添加的CaCO3微粉为高纯微粉,纯度大于99%,其粒度分布如图 1示。可以看出,CaCO3微粉粒度较小,主要粒度分布在10 μm左右,D50为6 μm,D90为24 μm。

    图  1  CaCO3微粉的粒度分布
    Figure  1.  Particle size distribution of CaCO3 powders

    将Ca(OH)2和m-ZrO2按摩尔比1:1称量,等量分成五组,每组混合粉末中依次加入质量分数为0%、2%、4%、6%、8%和10%CaCO3微粉,再用卧式球磨机混合12 h,经过FLS手动四柱油压机在200 MPa压力下将混合粉末压制成ϕ20 mm圆柱试样,再用硅钼棒高温烧结炉在1600 ℃加热并保温3 h后随炉冷却到常温以备性能检测。

    烧结前将压好的试样放置在烘箱内110 ℃下保温24 h,取出冷却至常温,测量其高度(L0);试样经高温煅烧,冷却到常温后测量其烧后高度(L1),根据式(1)计算试样烧结前后线变化率(ΔLd)。

    $$ \Delta {L_{\rm{d}}} = \left[ {\left( {{L_1} - {L_0}} \right)/{L_0}} \right] \times 100\% $$ (1)

    利用阿基米德排水法检测试样煅烧后的体积密度和显气孔率[12]。煅烧后试样经切割、抛光及热处理后,采用扫描电子显微镜(scanning electron microscope,SEM)观察其组织形貌,使用X射线衍射仪(X-ray diffractometer,XRD)对其进行物相分析。

    图 2为烧结前后试样线变化率,从图 2可以看到,CaCO3微粉加入会改变试样线变化率。没有添加CaCO3微粉时,试样烧结前后线变化率为8.23%;当添加CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量增大,试样烧结前后线变化率逐渐增大;当加入CaCO3微粉质量分数为8%时,试样收缩率达到最大值,为14.89%;继续增大CaCO3微粉添加量,试样烧结前后线变化率呈降低趋势。

    图  2  线变化率与添加CaCO3微粉质量分数的关系
    Figure  2.  Relationship between shrinkage and the CaCO3 addition content by mass

    图 3为高温煅烧后制备的锆酸钙体积密度和显气孔率,由图 3可以看到,CaCO3微粉的引入对制备的锆酸钙烧结性能产生影响。当没有添加CaCO3微粉时,制备的锆酸钙体积密度为3.4 g·cm-3,显气孔率为14.5%;随CaCO3质量分数增加,制备锆酸钙体积密度逐渐增加,显气孔率逐渐减小;当CaCO3微粉添加量为8%时,制备锆酸钙的体积密度最大,为4.02 g·cm-3,显气孔率最小,为8.6%;当CaCO3质量分数继续增大时,锆酸钙的体积密度开始降低,显气孔率反增大。

    图  3  烧结试样体积密度、显气孔率与添加CaCO3质量分数的关系
    Figure  3.  Relationship of bulk density, apparent porosity, and CaCO3 addition content by mass of sintering samples

    图 4为添加质量分数10%CaCO3制备样品的X射线衍射图谱,从图中可以看出,样品经1600 ℃保温3 h后主要物相为CaZrO3以及少量CaZr4O18

    图  4  添加质量分数10%CaCO3微粉制备样品的X射线衍射图谱
    Figure  4.  XRD patterns of samples add by CaCO3 powders in the mass faction of 10%

    图 5为添加不同质量分数CaCO3微粉的样品在1600 ℃烧后放大10000倍的扫描电子显微组织结构图。从图 5可以看出,CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量的增大,试样致密性逐渐增加,锆酸钙晶粒尺寸逐渐变大,且晶体发育越来越均匀;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸最大,试样中基本无封闭气孔;当CaCO3微粉质量分数继续增大时,样品中出现封闭气孔,致密性变差,锆酸钙晶粒尺寸有变小趋势。

    图  5  添加不同质量分数CaCO3微粉的锆酸钙试样在1600 ℃烧结后扫描电子显微组织形貌:(a)0%;(b)2%;(c)4%;(d)6%;(e)8%;(f)10%
    Figure  5.  SEM micrographs of sintered CaZrO3 samples at 1600 ℃ added by CaCO3 powders in different mass fractions: (a) 0%; (b) 2%; (c) 4%; (d) 6%; (e) 8%; (f) 10%

    利用图象处理软件对图 5进行定量晶体大小测定,获得锆酸钙的平均晶粒尺寸,见表 1。可以发现,没有引入CaCO3微粉时,样品中锆酸钙晶粒尺寸最小为4.08 μm;随CaCO3微粉质量分数增大,锆酸钙晶粒尺寸逐渐增大;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸达到最大,为5.45 μm;当CaCO3微粉质量分数量继续增大时,锆酸钙晶粒尺寸反而变小。

    表  1  样品中CaCO3质量分数与锆酸钙晶粒直径的关系
    Table  1.  Relationship between CaZrO3 particle diameter and CaCO3 addition content by mass
    CaCO3质量分数/% 0 2 4 6 8 10
    CaZrO3晶粒直径/μm 4.08 4.43 4.88 5.08 5.45 5.21
    下载: 导出CSV 
    | 显示表格

    为了分析CaCO3微粉对锆酸钙烧结性能的影响,选取添加质量分数8%CaCO3微粉的试样,分别在500、600、700、800、900、1000及1100 ℃下保温3 h,分析在各个温度下烧后试样物相组成。图 6为试样在不同温度烧结后X射线衍射图谱。可以看出,试样经过500 ℃保温3 h后,物相组成没有太大变化;经过600 ℃保温3 h后,物相中开始有少量CaO出现,这是因为Ca(OH)2分解为CaO温度为580 ℃左右[13];当试样在700、800 ℃保温3 h后,Ca(OH)2质量分数逐渐减少,衍射峰逐渐减弱,CaO质量分数逐渐增大,衍射峰峰强逐渐增强,CaCO3衍射峰强在700 ℃之前逐渐增强,这是因为随烧结温度的升高,CaCO3晶粒发育越来越充分,烧成温度达到800 ℃时,CaCO3衍射峰强开始减弱,说明CaCO3开始分解为CaO;烧结温度为900 ℃时,CaCO3衍射峰逐渐减弱,CaO峰强增加迅速,这是因为CaCO3理论分解温度为850 ℃左右[14],分解生成高活性的CaO微晶均匀附着在Ca(OH)2分解形成CaO晶体表面,从而有利于CaO晶体扩散,可以促进CaO晶体长大,提高了CaO晶体的均匀性和生长致密性;继续升高烧结温度,CaCO3衍射峰强逐渐减弱乃至消失。

    图  6  添加质量分数8%CaCO3试样在不同温度烧结后X射线衍射图谱
    Figure  6.  XRD patterns of samples sintered at different temperatures add by CaCO3 powders in the mass faction of 8%

    当烧结温度达到900 ℃时,物相中开始出现CaZrO3衍射峰,说明开始生成CaZrO3。随烧结温度的提高,CaZrO3衍射峰强增加迅速,一部分原因是因为温度升高,CaZrO3迅速长大,另一部分原因是因为CaCO3分解CaO微晶附着在Ca(OH)2分解形成的CaO晶体表面,促进CaO晶体长大,为高温下CaO和ZrO2反应生成CaZrO3奠定基础。但添加过多的CaCO3微粉时,由于CaCO3在分解过程中产生过量CO2气体逸出形成大量的气体孔洞,不利于质点的迁移,导致烧结性能变差。

    (1)添加少量CaCO3微粉有利于锆酸钙烧结致密性。没有添加CaCO3微粉时,烧结温度为1600 ℃,锆酸钙体积密度为3.40 g·cm-3,显气孔率为14.5%;添加质量分数8%CaCO3微粉时,锆酸钙体积密度为4.02 g·cm-3,显气孔率为8.6%。

    (2)添加少量CaCO3微粉有利于锆酸钙晶粒长大。烧结温度为1600 ℃,无添加CaCO3微粉时,锆酸钙晶粒尺寸为4.08 μm;添加质量分数8%CaCO3微粉时,锆酸钙晶粒尺寸为5.45 μm。

  • 图  1   摩擦磨损试验机及接触示意图

    Figure  1.   Schematic diagram of the friction and wear testing machine

    图  2   摩擦前钛合金金属丝能谱分析

    Figure  2.   EDS analysis of the TC4 titanium alloy wire before friction

    图  3   不同载荷下摩擦参数:(a)摩擦系数;(b)磨损深度;(c)稳定摩擦系数和磨损率

    Figure  3.   Friction parameters under the different loads: (a) friction coefficient; (b) wear depth; (c) stable friction coefficient and wear rate

    图  4   不同载荷下显微形貌及能谱分析:(a)5 N;(b)10 N;(c)20 N

    Figure  4.   SEM and EDS spectra of wear surface under different loads: (a) 5 N; (b) 10 N; (c) 20 N

    图  5   不同摩擦速度下摩擦参数:(a)摩擦系数;(b)磨损深度;(c)摩擦系数稳定值和磨损率

    Figure  5.   Friction parameters at the different friction speeds: (a) friction coefficient; (b) wear depth; (c) stable value of friction coefficient and wear rate

    图  6   不同摩擦速度下磨损表面显微形貌及能谱分析:(a)120 mm·min‒1;(b)180 mm·min‒1;(c)240 mm·min‒1;(d)300 mm·min‒1

    Figure  6.   SEM images and EDS spectra of wear surface at the different friction speeds: (a) 120 mm·min‒1; (b) 180 mm·min‒1; (c) 240 mm·min‒1; (d) 300 mm·min‒1

    图  7   FV值与摩擦系数和磨损率关系

    Figure  7.   Relationship of FV value, friction coefficient, and wear rate

    表  1   不同试验条件下FV

    Table  1   FV value under the different conditions

    编号载荷,F / N摩擦速度,V / (mm·min‒1)FV / (N·m·s‒1)
    1#52400.02
    2#102400.04
    3#202400.08
    4#101200.02
    5#101800.03
    6#103000.05
    下载: 导出CSV
  • [1] 朱知寿. 我国航空用钛合金技术研究现状及发展. 航空材料学报, 2014, 34(4): 44

    Zhu Z S. Recent research and development of titanium alloys for aviation application in China. J Aeronaut Mater, 2014, 34(4): 44

    [2] 季正勇, 李春福, 宋开红, 等. 金属橡胶的应用研究及其进展. 热加工工艺, 2011, 40(16): 96

    Ji Z Y, Li C F, Song K H, et al. Application research and development of metal-rubber. Hot Work Technol, 2011, 40(16): 96

    [3] 胡林泉, 缪强, 梁文萍, 等. 载荷对经氧‒氮共渗的TC4钛合金摩擦学性能的影响. 热处理, 2019, 34(3): 1

    Hu L Q, Miao Q, Liang W P, et al. Effect of loads on tribological characteristics of oxynitrided TC4 titanium alloy. Heat Treat, 2019, 34(3): 1

    [4] 景鹏飞, 俞树荣, 宋伟, 等. 接触载荷对TC4钛合金微动磨损行为的影响. 表面技术, 2019, 48(11): 266

    Jing P F, Yu S R, Song W, et al. Effect of contact load on fretting wear behavior of TC4 titanium alloy. Surf Technol, 2019, 48(11): 266

    [5]

    Liang S X, Yin L X, Zheng L Y, et al. The microstructural evolution and grain growth kinetics of TZ20 alloy during isothermal annealing. Mater Des, 2016, 99(6): 396

    [6]

    Li X X, Zhou Y, Ji X L, et al. Effects of sliding velocity on Tribo-oxides and wear behavior of Ti‒6Al‒4V alloy. Tribol Int, 2015, 91(2): 228

    [7]

    Li X X, Zhou Y, Li Y X, et al. Dry sliding wear characteristics of Ti‒6.5Al‒3.5Mo‒1.5Zr‒0.3Si alloy at various sliding speeds. Metall Mater Trans A, 2015, 46(9): 4360

    [8] 郭薇, 李健, 黄淑梅, 等. 微动幅值对Ti‒6Al‒4V合金摩擦特性的影响. 钛工业进展, 2016, 33(5): 16

    Guo W, Li J, Huang S M, et al. Effect of fretting amplitude on friction properties of Ti‒6Al‒4V alloy. Titanium Ind Prog, 2016, 33(5): 16

    [9] 刘勇, 杨德庄, 何世禹, 等. TC4合金的磨损率及磨损表面层的显微组织变化. 稀有金属材料与工程, 2005, 34(1): 128

    Liu Y, Yang D Z, He S Y, et al. Study on dry sliding wear of TC4 alloy in vacuum. Rare Met Mater Eng, 2005, 34(1): 128

    [10]

    Liu Y, Yang D Z, He S Y, et al. Drying sliding wear behavior of Ti‒6Al‒4V alloy in air. J Harbin Inst Technol, 2002, 9(1): 67

    [11]

    Liu Y, Yang D Z, He S Y, et al. Drying sliding wear of Ti‒6Al‒4V alloy in air and vacuum. Trans Nonferrous Met Soc China, 2003, 3(5): 1137

    [12] 徐永利, 王世洪, 梁佑明, 等. 环境气氛对钛合金微动磨损特性的影响. 航空材料学报, 1990, 10(2): 13

    Xu Y L, Wang S H, Liang Y M, et al. Environmental atmosphere effect on fretting wear characteristics of titanium alloy. J Aeronaut Mater, 1990, 10(2): 13

    [13] 杜洋, 吕晓仁, 李述军. 钛合金干摩擦磨损及减磨方法研究进展. 金属材料与冶金工程, 2021, 49(1): 30

    Du Y, Lü X R, Li S J. Research progress on dry friction and wear of titanium alloys and wear reduction methods. Met Mater Metall Eng, 2021, 49(1): 30

    [14] 姚小飞, 谢发勤, 韩勇, 等. 温度对TC4钛合金摩擦磨损性能和摩擦系数的影响. 稀有金属材料与工程, 2012, 41(8): 1463

    Yao X F, Xie F Q, Han Y, et al. Effects of temperature on wear properties and friction coefficient of TC4 alloy. Rare Met Mater Eng, 2012, 41(8): 1463

    [15] 姚小飞, 谢发勤, 韩勇, 等. TC4合金和P110油管钢摩擦磨损性能的比较. 稀有金属材料与工程, 2012, 41(9): 1539

    Yao X F, Xie F Q, Han Y, et al. Comparison of friction wear properties between TC4 titanium alloy and P110 tubing steel. Rare Met Mater Eng, 2012, 41(9): 1539

    [16] 陆海峰, 缪强, 梁文萍, 等. 不同温度对TC4-DT钛合金摩擦磨损性能的影响. 南京航空航天大学学报, 2016, 48(1): 29 DOI: 10.16356/j.1005-2615.2016.01.005

    Lu H F, Miao Q, Liang W P, et al. Effect of different temperatures on tribological properties of TC4-DT alloy. J Nanjing Univ Aeronaut Astronaut, 2016, 48(1): 29 DOI: 10.16356/j.1005-2615.2016.01.005

    [17]

    Qu J, Blau P J, Watkins T R, et al. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear, 2005, 258(9): 1348 DOI: 10.1016/j.wear.2004.09.062

    [18] 应扬, 李磊, 赵彬, 等. 钛合金的摩擦磨损性能及其改善方法. 有色金属材料与工程, 2019, 40(3): 49

    Ying Y, Li L, Zhao B, et al. Friction and wear properties of titanium alloys and the improving methods. Nonferrous Met Mater Eng, 2019, 40(3): 49

    [19]

    Zhang Q, Ding H, Zhou G, et al. Dry sliding wear behavior of a selected titanium alloy against counterface steel of different hardness levels. Metall Mater Trans A, 2019, 50: 220 DOI: 10.1007/s11661-018-4993-5

    [20] 郭华锋, 孙涛, 李菊丽. 不同摩擦条件下TC4钛合金摩擦学性能研究. 热加工工艺, 2014, 43(10): 40

    Guo H F, Sun T, Li J L. Tribological properties of TC4 alloy under different friction conditions. Hot Working Technol, 2014, 43(10): 40

    [21] 黄明吉, 韩建磊, 董秀萍. SLM-316L细丝脂润滑摩擦磨损性能. 工程科学学报, 2021, 43(6): 835

    Huang M J, Han J L, Dong X P. Tribological properties of the SLM-316L filament under the grease lubrication condition. Chin J Eng, 2021, 43(6): 835

    [22] 黄明吉, 李斌, 董秀萍, 等. 丝径对316L不锈钢丝摩擦磨损行为的影响. 摩擦学学报, 2021, 41(2): 206 DOI: 10.16078/j.tribology.2020101

    Huang M J, Li B, Dong X P, et al. Effect of wire diameter on friction and wear behavior of 316L stainless steel wire. Tribology, 2021, 41(2): 206 DOI: 10.16078/j.tribology.2020101

    [23]

    Grützmacher P G, Rammacher S, Rathmann D, et al. Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals. Friction, 2019, 7(6): 637 DOI: 10.1007/s40544-019-0259-5

    [24]

    Chelliah N, Kailas S V. Synergy between tribo-oxidation and strain rate response on governing the dry sliding wear behavior of titanium. Wear, 2009, 266(7): 704

    [25]

    Mao Y S, Wang L, Chen K M, et al. Tribo-layer and its role in dry sliding wear of Ti‒6Al‒4V alloy. Wear, 2013, 297(1): 1032

    [26]

    Cui X H, Mao Y S, Wei M X, et al. Wear characteristics of Ti‒6Al‒4V alloy at 20~400 ℃. Tribol Trans, 2012, 55(2): 185 DOI: 10.1080/10402004.2011.647387

    [27]

    Wang L, Zhang Q Y, Li X X, et al. Severe-to-mild wear transition of titanium alloys as a function of temperature. Tribol Lett, 2014, 53(3): 511 DOI: 10.1007/s11249-013-0289-5

    [28]

    Wang L, Zhang Q Y, Li X X, et al. Dry sliding wear behavior of Ti‒6.5Al‒3.5Mo‒1.5Zr‒0.3Si alloy. Metall Mater Trans A, 2014, 45(4): 2284 DOI: 10.1007/s11661-013-2167-z

    [29] 何燕妮, 俞树荣, 李淑欣, 等. 摩擦氧化层对TC4合金磨损行为和摩擦系数的影响. 稀有金属材料与工程, 2021, 50(4): 1417

    He Y N, Yu S R, Li S X, et al. Effect of tribo-oxide layers on wear properties and coefficient of friction of TC4 alloy in fretting. Rare Met Mater Eng, 2021, 50(4): 1417

    [30]

    Straffelini G, Molinari A. Mild sliding wear of Fe‒0.2%C, Ti‒6%Al‒4%V and Al-7072: a comparative study. Tribol Lett, 2011, 41: 227

  • 期刊类型引用(1)

    1. 路跃,刘国齐,杨文刚,燕鹏飞,马渭奎,李红霞. 烧结助剂对锆酸钙材料性能的影响. 耐火材料. 2023(05): 407-411 . 百度学术

    其他类型引用(1)

图(7)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-08-16
  • 网络出版日期:  2022-10-30
  • 刊出日期:  2023-04-27

目录

/

返回文章
返回