高级检索

钨极氩弧焊焊接粉末冶金高铬铸铁/低碳钢的焊接性能及组织演变

钟斯远, 肖平安, 赵吉康

钟斯远, 肖平安, 赵吉康. 钨极氩弧焊焊接粉末冶金高铬铸铁/低碳钢的焊接性能及组织演变[J]. 粉末冶金技术, 2024, 42(4): 346-353. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100002
引用本文: 钟斯远, 肖平安, 赵吉康. 钨极氩弧焊焊接粉末冶金高铬铸铁/低碳钢的焊接性能及组织演变[J]. 粉末冶金技术, 2024, 42(4): 346-353. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100002
ZHONG Siyuan, XIAO Ping’an, ZHAO Jikang. Weldability and microstructure evolution of powder metallurgy high chromium cast iron/low carbon steel welded by gas tungsten arc welding[J]. Powder Metallurgy Technology, 2024, 42(4): 346-353. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100002
Citation: ZHONG Siyuan, XIAO Ping’an, ZHAO Jikang. Weldability and microstructure evolution of powder metallurgy high chromium cast iron/low carbon steel welded by gas tungsten arc welding[J]. Powder Metallurgy Technology, 2024, 42(4): 346-353. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100002

钨极氩弧焊焊接粉末冶金高铬铸铁/低碳钢的焊接性能及组织演变

基金项目: 国家自然科学基金资助项目(20151075506,51574119)
详细信息
    通讯作者:

    肖平安: Email: changcluj@163.com

  • 中图分类号: TF125;TG47

Weldability and microstructure evolution of powder metallurgy high chromium cast iron/low carbon steel welded by gas tungsten arc welding

More Information
  • 摘要:

    以粉末冶金高铬铸铁和低碳钢为原材料,采用多道次手工钨极氩弧焊,研究了焊接电流对焊缝组织演变和力学性能的影响,提出了焊接接头组织演化模型,并探讨了其断裂机理。结果表明,焊接接头的抗拉强度在焊接电流为140 A时达到538.1MPa,分别是烧结高铬铸铁和低碳钢抗拉强度的95.3%和97.4%。由于二次回火和合金元素扩散/偏析的作用,焊接接头的显微硬度在水平方向上由高铬铸铁一侧向低碳钢一侧逐渐降低,而在垂直方向则呈M形分布。当焊接电流为140 A时,焊缝的熔合区主要由奥氏体和回火马氏体组成,在熔合区与低碳钢母材之间存在一个单一奥氏体柱状晶区;在熔合区与烧结高铬铸铁母材之间,存在一个柱状高铬铸铁区域,该区域的碳化物为粗糙树枝状,沿基体晶界分布。

    Abstract:

    Powder metallurgy high chromium cast iron (PM HCCI) and low carbon steels (LCS) were welded by multi-pass manual gas tungsten arc welding (GTAW). The effects of welding current on the microstructure evolution and mechanical properties of the weld joints were systematically investigated, the microstructure evolution model of the weld joints was proposed, and the fracture mechanism of the solders was also discussed. In the results, the tensile strength of the welded joints reaches 538.1 MPa at 140 A welding current, which is 95.3% and 97.4% of the tensile strength for PM HCCI and LCS, respectively. The microhardness of the welded joints decreases from HCCI side to LCS side in the horizontal direction, whereas in the vertical direction, the microhardness distribution is of M-shape due to the secondary tempering and alloying element diffusion/segregation. The fusion zone (FZ) mainly consists of the austenite and tempered martensite at the welding current of 140 A, and there is a single austenite columnar crystals zone between FZ and LCS; while there is a HCCI columnar crystal zone between FZ and the sintered HCCI, in which the coarsen carbides with branches are distributed along the matrix’s grain boundary.

  • 图  1   焊缝的几何形状(a)和试样拉伸尺寸(b)

    Figure  1.   Geometry of the weld (a) and the dimensions of tensile samples (b)

    图  2   低碳钢、高铬铸铁和焊接接头在不同焊接电流下拉伸强度(a)、断裂延伸率(b)和拉伸断裂样品(c)

    Figure  2.   Tensile strength (a), elongation (b), and tensile fractured samples (c) of HCCI, LCS, and the weld joints at different welding currents

    图  3   焊接接头在焊接电流为140 A时的显微硬度:(a)取点位置;(b)水平方向;(c)垂直方向

    Figure  3.   Microhardness of the welded joints at 140 A welding current: (a) testing points distribution; (b) horizontal direction and; (c) vertical direction

    图  4   焊接接头高铬铸铁侧在不同焊接电流下的显微硬度

    Figure  4.   Microhardness of the welded joints on the high chromium cast iron side at different welding currents

    图  5   不同焊接电流下焊接接头的拉伸断口显微形貌:(a)130 A;(b)、(c)140 A;(d)160 A

    Figure  5.   Fracture surface SEM images of the welded joints at different welding currents: (a) 130 A; (b), (c) 140 A; (d) 160 A

    图  6   低碳钢–高铬铸铁氩弧焊焊缝宏观形貌(a)和各部位显微组织(b)~(i)

    Figure  6.   Macroscopic morphology (a) and the microstructure of each parts (b)~(i)

    图  7   焊接接头显微组织示意图

    Figure  7.   Schematic diagram of microstructure distribution model for PM HCCI/LCS weld joints

    图  8   焊接接头高铬铸铁一侧在不同焊接电流下的显微组织:(a)、(d)130 A;(b)、(e)140 A;(c)、(f)160 A

    Figure  8.   Microstructure of the welded joints in the HCCI side at different welding currents: (a), (d) 130 A; (b), (e) 140 A; (c), (f) 160 A

    图  9   焊接电流为140 A时高铬铸铁–焊缝界面能谱分析

    Figure  9.   SEM image and EDS analysis of the fusion zone and HCCI interface with the welding current of 140 A

    图  10   焊接电流为140 A时焊缝–低碳钢界面能谱分析

    Figure  10.   SEM image and EDS analysis of the fusion zone and LCS interface with the welding current of 140 A

    表  1   三种实验材料的化学组成(质量分数)

    Table  1   Chemical compositions of the experimental materials %

    材料组分CCrNiSiMnFe
    粉末冶金高铬铸铁2.6715.401.220.770.63余量
    低碳钢0.120.020.010.220.29余量
    焊丝0.070.200.901.60余量
    下载: 导出CSV

    表  2   多道次手工钨极氩弧焊和热处理工艺参数

    Table  2   Process parameter of manual multipass GTAW welding and heat treatment

    焊丝直径 / mm钨电极直径 / mm氩气纯度 / %气体流量 / (L·min−1)焊接电流 / A热处理工艺
    22.4995130, 140, 150, 160500 ℃, 2 h
    下载: 导出CSV

    表  3   焊缝的元素组成(质量分数)

    Table  3   Compositions of the welded zone %

    检测位置 Cr C Fe
    1.58 10.06 88.36
    6.61 8.75 87.75
    3.12 7.61 85.29
    下载: 导出CSV
  • [1]

    Tbarett C P, Sare I R. Fracture toughness of high-chromium white irons: Influence of cast structure. J Mater Sci, 2000, 35: 2069 DOI: 10.1023/A:1004755511214

    [2]

    Choo S H, Kim C K, Euh K, et al. Correlation of microstructure with the wear resistance and fracture toughness of hardfacing alloys reinforced with complex carbides. Metall Mater Trans A, 2000, 31: 3041 DOI: 10.1007/s11661-000-0083-5

    [3]

    Li Y C, Gao J, Xu N, et al. Fabrication of a high chromium cast iron/low carbon steel bimetal: Diffusion behavior and bonding strength. J Mater Eng Perform, 2019, 28: 6904 DOI: 10.1007/s11665-019-04401-8

    [4]

    Liu F, Jiang Y H, Xiao H, et al. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron. J Alloys Compd, 2015, 618: 380 DOI: 10.1016/j.jallcom.2014.07.131

    [5]

    Xiong B W, Cai C C, Lu B P. Effect of volume ratio of liquid to solid on the interfacial microstructure and mechanical properties of high chromium cast iron and medium carbon steel bimetal. J Alloys Compd, 2011, 509(23): 6700 DOI: 10.1016/j.jallcom.2011.03.142

    [6]

    Gao X J, Jiang Z Y, Wei D B, et al. Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusion-compression bonding. Mater Des, 2014, 63: 650 DOI: 10.1016/j.matdes.2014.06.067

    [7]

    Oh H, Lee S, Jung J Y, et al. Correlation of microstructure with the wear resistance and fracture toughness of duocast materials composed of high-chromium white cast iron and low-chromium steel. Metall Mater Trans A, 2001, 32: 515 DOI: 10.1007/s11661-001-0068-z

    [8]

    Shah L H, Othman N H, Gerlich A. Review of research progress on aluminium-magnesium dissimilar friction stir welding. Sci Technol Weld Join, 2018, 23(3): 256 DOI: 10.1080/13621718.2017.1370193

    [9]

    Tusek J, Kampus Z, Suban M. Welding of tailored blanks of different materials. J Mater Process Technol, 2001, 119(1-3): 180 DOI: 10.1016/S0924-0136(01)00937-2

    [10]

    Wang H, Yu S F. Influence of heat treatment on microstructure and sliding wear resistance of high chromium cast iron electroslag hardfacing layer. Surf Coat Technol, 2017, 319: 182 DOI: 10.1016/j.surfcoat.2017.04.013

    [11]

    Wang J B, Liu T T, Zhou Y F, et al. Effect of nitrogen alloying on the microstructure and abrasive impact wear resistance of Fe−Cr−C−Ti−Nb hardfacing alloy. Surf Coat Technol, 2017, 309: 1072 DOI: 10.1016/j.surfcoat.2016.10.029

    [12]

    Wang Y, Gou J F, Chu R Q, et al. The effect of nano-additives containing rare earth oxides on sliding wear behavior of high chromium cast iron hardfacing alloys. Tribol Int, 2016, 103: 102 DOI: 10.1016/j.triboint.2016.06.041

    [13]

    Kasińska J, Skrzypczyk A. Fracture energy and fracture morphology after three-point bending test of welded joints made of cast steel designed for use in power sector, with and without the addition of rare earth metals. Metals, 2018, 8(2): 115 DOI: 10.3390/met8020115

    [14]

    Teker T, Karakurt E M, Özabaci M, et al. Investigation of the weldability of AISI304 and AISI1030 steels welded by friction welding. Metall Res Technol, 2020, 117(6): 601 DOI: 10.1051/metal/2020058

    [15]

    Gu J H, Xiao P G, Song J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties. J Alloys Compd, 2018, 740: 485 DOI: 10.1016/j.jallcom.2017.11.189

    [16]

    Jankausk V, Aantonov M, Varnauskas V, et al. Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon or stainless steel matrix. Wear, 2015, 328: 378

图(10)  /  表(3)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  66
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2024-08-27

目录

    /

    返回文章
    返回