Effect of ball milling process on microstructure and mechanical properties of CNTs/Al composites
-
摘要:
采用湿法球磨和干法球磨两种方式制备碳纳米管(carbon nanotubes,CNTs)和铝的复合粉体,再使用放电等离子烧结结合热挤压的工艺制备碳纳米管增强铝基(CNTs/Al)复合材料,系统研究了制备工艺-组织结构-材料性能之间的关系。结果表明,相较于干法球磨,湿法球磨可以更好地分散碳纳米管,且显著减少对其结构的破坏;乙醇球磨介质具有冷却作用,在减少粉体冷焊的同时有助于细化Al基体晶粒,从而使复合材料获得出色的力学性能。乙醇湿法球磨6 h后烧结并热挤压的2%CNTs/Al复合材料抗拉强度达到207 MPa。
-
关键词:
- CNTs增强铝基复合材料 /
- 球磨工艺 /
- 湿法球磨 /
- 显微组织 /
- 力学性能
Abstract:Carbon nanotubes (CNTs) and aluminum composite powders were prepared by both wet ball milling and dry ball milling. The CNTs reinforced aluminum matrix (CNTs/Al) composites were fabricated by sparking plasma sintering (SPS) combined with hot extrusion process, and the relationship of preparation process, microstructure, and mechanical properties was explored systematically. The results show that, compared with the dry ball milling, the wet ball milling can better disperse CNTs, and significantly reduce the damage to the structure of CNTs. The ethanol ball milling medium has the cooling effect to significantly refine the grain size and reduce the cold welding of the powders, resulting in the excellent mechanical properties of the composites. The tensile strength of 2%CNTs/Al composites sintered and hot extruded after wet ball milling for 6 h reaches 207 MPa.
-
钨铼合金是以钨元素为基体且与铼元素组成的固溶强化型合金。由于铼效应[1−7],钨铼合金在变形过程中易形成孪晶,减少了堆垛层位错能量,降低了位错移动的晶界阻抗,具有高再结晶温度、高强度、高塑性以及低蒸汽压、低电子逸出功和低韧脆转变温度等优点,在航空航天、核工业、电子工业、高端医疗等领域有着广泛的应用[8−11]。钨铼合金中铼质量分数一般为3%~25%,当铼质量分数超过25%时,钨铼合金中生产W2Re3合金相,W2Re3是一种高强度和高硬度的组织结构,给钨铼合金的变形加工带来困难,同时对钨铼合金的均匀性有不良影响[12−16]。通常使用的钨铼合金材质牌号有W−3Re、W−5Re和W−25Re。
国外对大规格钨铼合金结构件材料进行了大量的研究,其中Leonhardt[17]研究了W−25Re、W−24.5Re−2.0HfC棒材的微观组织和力学性能。国内对钨铼合金的研究局限于丝材,对钨铼合金作为结构件材料研究较少。锻造态钨铼合金的综合性能受变形量、应变速率、锻造温度和退火温度等多种因素影响,其中退火温度是一个重要的工艺参数。本文采用粉末冶金法制备了直径为30 mm的W−25Re合金棒材,研究了退火温度对钨铼合金微观组织、硬度和力学性能的影响。
1. 实验材料及方法
采用粉末冶金法制备了W−25Re合金(铼质量分数为25%),原料选用钨粉和高纯铼粉。钨粉粒度为2.9 μm,纯度99.96%,铼粉粒度D50=25 μm,纯度99.99%。将钨粉与高纯铼粉在三维混料机中机械混合,混料时间6 h。将混合后的粉末至于模具内并放入冷等静压机进行压制成型,成型压力为220 MPa,时间为10 min。将压制成型的坯料放置在中频感应烧结炉内,最高烧结温度设定为2320 ℃,烧结后的坯料直径为70 mm,密度为18.6 g/cm3。采用空气锤经高温多道次锻造变形,锻造开坯温度为1600 ℃,锻造总变形量为81%,最终得到直径为30 mm的锻坯棒材。
在氢气保护气氛炉内进行钨铼合金的退火实验,退火温度分别设定为1300、1400、1500、1600、1700 ℃,退火时间为1 h,退火完成后随炉冷却至室温。沿坯料的纵向方向上切取6 mm×6 mm×8 mm的试样,磨拋后置于NaOH和K3Fe(CN)6水溶液中进行腐蚀。在OLYMPUS GX51型金相显微镜上观察钨铼合金腐蚀试样的微观组织。在SANS-CMT-5205型电子万能试验机上测试棒材室温拉伸性能,拉伸速度设定为v=2 mm/min。在JEOLJSM-6380LV型扫描电镜上观察钨铼合金显微组织以及室温拉伸断口形貌,并采用HVS-50维氏硬度计测试材料硬度。
2. 结果和讨论
2.1 W−25Re合金金相组织与性能
图1是钨铼合金烧结态和锻造态金相形貌。由图可知,烧结态钨铼合金晶粒内部存在大量孔隙,晶界平直清晰。铼原子的存在阻碍了晶界扩散,细化了烧坯晶粒,平均晶粒尺寸约为30 μm。经锻造变形后,钨铼合金内部孔隙减少,晶粒被拉长成纤维状组织,密度达到19.67 g/cm3,相对密度为99.8%。由于固溶强化、变形强化、细晶强化等综合作用,锻造后钨铼合金的硬度达到HV30 540,抗拉强度为1620 MPa,断后伸长率为20%。
2.2 退火温度对W−25Re合金显微组织的影响
图2为钨铼合金在1300~1700 ℃温度下退火1 h后的显微组织。从图2可看出,在退火温度低于1400 ℃时,随着温度的升高,原子扩散加剧,变形应力逐步释放,晶粒开始发生回复,钨铼合金纵向组织仍保持热变形后的纤维状组织。当退火温度升高到1500 ℃时,可以观察到在已经宽化的纤维边界出现了细小的再结晶晶核,但仍保留着部分变形加工态组织,这表明1500 ℃ 时钨铼合金已经开始了局部再结晶。随着退火温度继续升高到1600 ℃,钨铼合金发生了完全再结晶,晶粒呈现等轴化,平均晶粒尺寸为40 μm。当退火温度升高到1700 ℃时,钨铼合金发生了晶粒长大,平均晶粒尺寸为55 μm。钨铼合金的晶粒长大是在完全再结晶之后开始,其驱动力是晶粒长大前后总的界面能差。
2.3 退火温度对W−25Re合金室温硬度的影响
图3所示为退火温度和W−25Re合金室温硬度的关系。从图3可以看出,未退火前,钨铼合金的室温硬度为HV30 540,随着退火温度的升高,钨铼合金的残余应力逐渐消除,在1300~1400 ℃时硬度缓慢下降至HV30 500,当退火温度升高到1500 ℃时,钨铼合金硬度下降至HV30 480,随着温度的进一步升高,在1600 ℃时,硬度显著下降至HV30 450。这是由于钨铼合金在1600 ℃退火后,钨铼合金发生了再结晶,钨铼合金晶粒尺寸长大,晶界所占面积减小,晶界强化效果降低;同时位错密度显著下降,消除了位错强化效果。当温度进一步升高到1700 ℃,硬度下降至HV30 400。
2.4 退火温度对W−25Re合金室温力学性能的影响
图4所示为W−25Re合金室温抗拉强度、断后伸长率与和退火温度的关系。从图4可看出,退火前的钨铼合金室温抗拉强度为1620 MPa;经1300 ℃退火,抗拉强度下降到1580 MPa;经1400℃退火,抗拉强度平缓下降至1520 MPa;经1500 ℃退火,抗拉强度下降至1420 MPa;1600℃退火后,抗拉强度进一步下降至1320 MPa;1700 ℃退火后,抗拉强度下降到1270 MPa。这是由于在1300~1400 ℃范围内退火,钨铼合金保持着变形加工态的纤维状组织,以发生回复过程为主,抗拉强度下降不显著,在回复阶段的晶粒尺寸及形态与锻造态基本保持一致,仅引起晶粒内部位错缠结和晶格畸变的减少,因此,回复阶段抗拉强度降低幅较小。在1500~1700 ℃范围内,随着退火温度的不断提高,钨铼合金发生了再结晶,抗拉强度大幅降低。从图4可以看出,在1300~1400 ℃范围内退火,随着退火温度的升高,断后伸长率逐渐升高,在1400 ℃时断后伸长率达到最高22%,随着退火温度的进一步升高,断后伸长率不断下降,在1700 ℃断后伸长率达到最低9%。
图5为1400 ℃和1700 ℃退火后室温拉伸断口形貌。从断口形貌可以看出,1400 ℃退火后,断口存在大量的解离面,此解离面由裂纹与螺位错的交互作用产生。同时,断口上还存在大量的撕裂岭,表明材料并非脆性断裂,而是经过塑性变形后断裂。因此,1400 ℃退火后材料拥有一定的强度和韧性。1700 ℃退火后,断口为“沿晶断裂+穿晶断裂”,此时材料为脆性断裂。因为实验中的钨铼合金经1700 ℃退火后已经发生再结晶,且晶粒明显长大,拉伸时发生脆性断裂。
3. 结论
(1)经锻造变形后,钨铼合金内部孔隙消除,晶粒被拉长成为纤维状组织,相对密度达到99.8%。
(2)在1300~1700 ℃范围内,钨铼合金棒材随着退火温度的升高,硬度逐渐降低,1700 ℃下降到HV30 400。抗拉强度随着退火温度的升高逐渐降低,1700 ℃抗拉强度下降至1270 MPa。室温断后伸长率随着退火温度的提高先升高后降低,1400 ℃时断后伸长率最高可达22%,断口存在大量的解离面,并存在大量的撕裂岭,为经过塑性变形后断裂;随着退火温度的进一步升高,断后伸长率不断下降,在1700 ℃断后伸长率达到最低9%,断口为明显的沿晶断裂断口,为脆性断裂。
(3)钨铼合金在1600 ℃时发生了完全再结晶,晶粒呈现等轴化,在1700 ℃时发生了晶粒长大。
-
表 1 实验原料参数及规格
Table 1 Parameters and specifications of the experimental raw materials
实验原料 参数及规格 铝粉 纯度99.95%,粒径25 μm,球形 CNTs 内径5~10 nm,外径10~20 nm,管长2 μm,
纯度>95%,比表面积≥200 m2/g,
灰份≤1.5%,真实密度~2.1 g/cm3表 2 不同球磨方式复合粉体中Al基体的晶粒尺寸
Table 2 Grain size of Al matrix in composites powder with the different ball milling processes
样品 平均晶粒尺寸大小 / nm 微观应变 / % 原始片状铝粉 60.6 0.0047 干法球磨复合粉 56.2 0.0060 湿法球磨复合粉 42.1 0.0090 -
[1] Ramnath B V, Elanchezhian C, Annamalai R M, et al. Aluminium metal matrix composites—A review. Rev Adv Mater Sci, 2014, 38: 55
[2] Xing Y, Li N Y, Li C J, et al. Effects of size and oxidation treatment for SiC particles on the microstructures and mechanical properties of SiCp/Al composites prepared by powder metallurgy. Mater Sci Eng A, 2022, 851: 143664 DOI: 10.1016/j.msea.2022.143664
[3] Xu Z Y, Li C J, Wang Z, et al. Balancing the strength and ductility of graphene oxide-carbon nanotube hybrid reinforced aluminum matrix composites with bimodal grain distribution. Mater Sci Eng A, 2020, 796: 140067 DOI: 10.1016/j.msea.2020.140067
[4] 徐保海, 刘联军, 车明超, 等. SiC含量对SiCp/Al复合材料摩擦性能的影响. 粉末冶金技术, 2022, 40(1): 67 Xu B H, Liu L J, Che M C, et al. Effect of SiC content on friction properties of SiCp/Al composites. Powder Metall Technol, 2022, 40(1): 67
[5] Iijima S. Helical microtubules of graphic carbon. Nature, 1991, 354: 56 DOI: 10.1038/354056a0
[6] 鲍瑞, 李澜波, 易健宏, 等. CNTs增强铜基复合粉末制备的研究进展. 粉末冶金技术, 2016, 34(6): 454 DOI: 10.3969/j.issn.1001-3784.2016.06.011 Bao R, Li L B, Yi J H, et al. The fabrication of carbon nanotube reinforced copper matrix powder. Powder Metall Technol, 2016, 34(6): 454 DOI: 10.3969/j.issn.1001-3784.2016.06.011
[7] Chen M L, Fan G L, Tan Z Q, et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Mater Des, 2018, 142: 288 DOI: 10.1016/j.matdes.2018.01.044
[8] Chen B, Kondoh K, Umeda J, et al. Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites. J Alloys Compd, 2019, 789: 25 DOI: 10.1016/j.jallcom.2019.03.063
[9] Liu X Q, Li C J, Eckert J, et al. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites. Mater Charact, 2017, 133: 122 DOI: 10.1016/j.matchar.2017.09.036
[10] Shirvanimoghaddam K, Hamim S U, Akbari M K, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A, 2017, 92: 70 DOI: 10.1016/j.compositesa.2016.10.032
[11] Xu R, Tan Z Q, Xiong D B, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites Part A, 2017, 96: 57 DOI: 10.1016/j.compositesa.2017.02.017
[12] Zhou W W, Yamaguchi T, Kikuchi K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater, 2017, 125: 369 DOI: 10.1016/j.actamat.2016.12.022
[13] Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon, 2018, 130: 333 DOI: 10.1016/j.carbon.2018.01.037
[14] Guo B S, Chen B, Zhang X M, et al. Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon, 2018, 135: 224 DOI: 10.1016/j.carbon.2018.04.048
[15] Ogawa F, Yamamoto S, Masuda C. Strong, ductile, and thermally conductive carbon nanotube-reinforced aluminum matrix composites fabricated by ball-milling and hot extrusion of powders encapsulated in aluminum containers. Mater Sci Eng A, 2018, 711: 460 DOI: 10.1016/j.msea.2017.11.077
[16] Yang X D, Liu E Z, Shi C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. J Alloys Compd, 2013, 563: 216 DOI: 10.1016/j.jallcom.2013.02.066
[17] Liu X Q, Li C J, Yi J H, et al. Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC. J Alloys Compd, 2018, 765: 98 DOI: 10.1016/j.jallcom.2018.06.170
[18] Liu X H, Li J J, Liu E Z, et al. Effectively reinforced load transfer and fracture elongation by forming Al4C3 for in-situ synthesizing carbon nanotube reinforced Al matrix composites. Mater Sci Eng A, 2018, 718: 182 DOI: 10.1016/j.msea.2018.01.065
[19] Li N Y, Yang C, Li C J, et al. Carbon nanotubes reinforced aluminum matrix composites with high elongation prepared by flake powder metallurgy. Diamond Relat Mater, 2020, 107: 107907 DOI: 10.1016/j.diamond.2020.107907
[20] Xu Z Y, Li C J, Li K R, et al. Carbon nanotube-reinforced aluminum matrix composites enhanced by grain refinement and in situ precipitation. J Mater Sci, 2019, 54: 8655 DOI: 10.1007/s10853-019-03411-0
[21] Xu Z Y, Li C J, Liu X Q, et al. In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling. J Maters Res, 2019, 34: 1248 DOI: 10.1557/jmr.2018.462
[22] Liu Z Y, Zhao K, Xiao B L, et al. Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater Des, 2016, 97: 424 DOI: 10.1016/j.matdes.2016.02.121
[23] Ci L J, Ryu Z Y, Jin-Phillipp N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater, 2006, 54(20): 5367 DOI: 10.1016/j.actamat.2006.06.031