高级检索

造孔剂对医用多孔Ti/16Mg复合材料组织性能的影响

许莹, 赵散玉, 夏朋昭, 何曜腾, 武泽倩, 蔡艳青

许莹, 赵散玉, 夏朋昭, 何曜腾, 武泽倩, 蔡艳青. 造孔剂对医用多孔Ti/16Mg复合材料组织性能的影响[J]. 粉末冶金技术, 2024, 42(6): 621-631. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110005
引用本文: 许莹, 赵散玉, 夏朋昭, 何曜腾, 武泽倩, 蔡艳青. 造孔剂对医用多孔Ti/16Mg复合材料组织性能的影响[J]. 粉末冶金技术, 2024, 42(6): 621-631. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110005
XU Ying, ZHAO Sanyu, XIA Pengzhao, HE Yaoteng, WU Zeqian, CAI Yanqing. Effects of pore-forming agents on microstructure and properties of biomedical porous Ti/16Mg composites[J]. Powder Metallurgy Technology, 2024, 42(6): 621-631. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110005
Citation: XU Ying, ZHAO Sanyu, XIA Pengzhao, HE Yaoteng, WU Zeqian, CAI Yanqing. Effects of pore-forming agents on microstructure and properties of biomedical porous Ti/16Mg composites[J]. Powder Metallurgy Technology, 2024, 42(6): 621-631. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110005

造孔剂对医用多孔Ti/16Mg复合材料组织性能的影响

基金项目: 国家自然科学基金资助项目(51874140);河北省自然科学基金资助项目(C2018209207);大学生创新创业计划项目(X2021222,R2022099)
详细信息
    通讯作者:

    蔡艳青: E-mail: caiyanqing126@126.com

  • 中图分类号: TG146.2

Effects of pore-forming agents on microstructure and properties of biomedical porous Ti/16Mg composites

More Information
  • 摘要:

    采用粉末冶金工艺结合微波烧结法制备了弹性模量接近于人体骨骼、强度符合人体植入物要求的医用多孔Ti/16Mg复合材料。通过扫描电镜、X射线衍射、金相显微镜、压缩试验以及耐腐蚀性测试等手段研究了造孔剂NH4HCO3粒径及添加量(质量分数)对复合材料的微观组织、力学性能和耐腐蚀性能的影响。结果表明:NH4HCO3对多孔Ti/16Mg复合材料的物相组成没有显著影响,试样孔隙随着NH4HCO3粒径的增大而增大,随着NH4HCO3添加量增加,试样孔隙率由16.64%增加到33.09%。当NH4HCO3粒径为165~198 μm、质量分数为18%时,多孔Ti/16Mg试样的弹性模量为6.49 GPa、抗压强度为115 MPa,满足人体植入物的力学性能要求。NH4HCO3粒径对复合材料的耐腐蚀性影响不大,在相同粒径条件下,随NH4HCO3质量分数由0增加至24%,复合材料的耐腐蚀性能略有下降,极化电阻由574.528 Ω·cm‒2下降到139.236 Ω·cm‒2

    Abstract:

    The biomedical porous Ti/16Mg composite materials with the elastic modulus close to that of human bone and the strength meeting the requirements of human implants were prepared by powder metallurgy combined with microwave sintering method in this paper. The effects of particle size and addition amount (mass fraction) of NH4HCO3 pore-forming agents on the microstructure, mechanical properties, and corrosion resistance of the composites were investigated by scanning electron microscopy, X-ray diffraction, metallography, compression test, and corrosion resistance test. The results show that NH4HCO3 has no significant effect on the phase composition of porous Ti/16Mg composites. The pore size increases with the increase of NH4HCO3 particle size, and the porosity increases from 16.64% to 33.09% with the increase of NH4HCO3 mass fraction. When the particle size of NH4HCO3 is 165~198 μm and the mass fraction is 18%, the elastic modulus of the porous Ti/16Mg composites is 6.49 GPa and the compressive strength is 115 MPa, which can meet the mechanical property requirements of human implants. Particle size of NH4HCO3 has little effect on the corrosion resistance of the porous Ti/16Mg composites. With the same particle size, the corrosion resistance of the porous Ti/16Mg composites decreases slightly and the polarization resistance decreases from 574.528Ω·cm‒2 to 139.236Ω·cm‒2 with the mass fraction of NH4HCO3 increasing from 0 to 24%.

  • 图  1   原始粉末微观形貌:(a)Ti粉;(b)Mg粉;(c)球磨8 h混合粉末

    Figure  1.   Microstructure of the original metal powders: (a) Ti powders; (b) Mg powders; (c) the mixed powders after ball milling for 8 h

    图  2   多孔Ti/Mg复合材料基体制备流程图

    Figure  2.   Preparationflow chart of the porous Ti/Mg composite matrix

    图  3   添加不同粒径18%NH4HCO3制备的Ti/16Mg复合材料X射线衍射图谱

    Figure  3.   XRD patterns of the Ti/16Mg composites added by 18%NH4HCO3 in different particle sizes

    图  4   添加不同粒径18%NH4HCO3制备的多孔Ti/16Mg复合材料显微形貌:(a)245~350 μm;(b)165~198 μm;(c)74~125 μm

    Figure  4.   SEM images of the porous Ti/16Mg composites added by 18%NH4HCO3 in different particle sizes: (a) 245~350 μm; (b) 165~198 μm; (c) 74~125 μm

    图  5   多孔Ti/16Mg复合材料孔隙周边部位能谱分析

    Figure  5.   EDS analysis around the pores of the porous Ti/16Mg composites

    图  6   多孔Ti/16Mg复合材料非孔隙部位分析

    Figure  6.   EDS analysis in the non-porous parts of the porous Ti/16Mg composites

    图  7   添加不同质量分数NH4HCO3制备的Ti/16Mg复合材料X射线衍射图谱

    Figure  7.   XRD patterns of the Ti/16Mg composites added by NH4HCO3 in different mass fraction

    图  8   添加不同质量分数NH4HCO3制备的多孔Ti/16Mg复合材料显微形貌:(a)6%;(b)12%;(c)18%;(d)24%

    Figure  8.   SEM images of the porous Ti/16Mg composites added by NH4HCO3 in different mass fraction: (a) 6%; (b) 12%; (c) 18%; (d) 24%

    图  9   添加不同质量分数NH4HCO3对多孔Ti/16Mg复合材料密度和孔隙率的影响

    Figure  9.   Effects of NH4HCO3 mass fraction on the density and porosity of the porous Ti/16Mg composites

    图  10   添加不同粒径18%NH4HCO3制备的多孔Ti/16Mg复合材料应力应变曲线

    Figure  10.   Stress-strain curves of the porous Ti/16Mg composites added by 18%NH4HCO3 in different particle sizes

    图  11   添加不同粒径18%NH4HCO3对多孔Ti/16Mg复合材料的力学性能影响

    Figure  11.   Effect of 18%NH4HCO3 with different particle sizes on the mechanical properties of the porous Ti/16Mg composites

    图  12   添加不同质量分数NH4HCO3制备的多孔Ti/16Mg复合材料的应力应变曲线

    Figure  12.   Stress‒strain curves of porous Ti/16Mg composites added by NH4HCO3 in different mass fraction

    图  13   添加不同质量分数NH4HCO3对多孔Ti/16Mg复合材料的力学性能影响

    Figure  13.   Effects of NH4HCO3 mass fraction on the mechanical properties of the porous Ti/16Mg composites

    图  14   添加不同粒径18%NH4HCO3制备的多孔Ti/16Mg复合材料动电位极化曲线

    Figure  14.   Potentiodynamic polarization curves of the porous Ti/16Mg composites added by 18%NH4HCO3 in different particle sizes

    图  15   添加不同质量分数NH4HCO3制备的多孔Ti/16Mg复合材料的动电位极化曲线

    Figure  15.   Potentiodynamic polarization curves of the porous Ti/16Mg composites added by NH4HCO3 in different mass fraction

    表  1   钛、镁粉末中元素化学成分(质量分数)

    Table  1   Chemical composition of the Ti and Mg powders %

    粉末FeAlCNSiVMnCuClNiPb
    Ti粉≤0.02≤0.01≤0.01≤0.01≤0.01≤0.02≤0.01
    Mg粉≤0.02≤0.02≤0.01≤0.01≤0.01≤0.01≤0.01≤0.01
    下载: 导出CSV

    表  2   人体模拟液配方

    Table  2   Formula of the simulated body fluid g·L‒1

    NaClNaHCO3KClK2HPO4·3H2OMgCl2·6H2OCaCl2Na2SO4(CH2OH)3CNH2
    8.0350.3550.2550.2310.3110.2920.0726.118
    下载: 导出CSV

    表  3   添加不同粒径18%NH4HCO3制备的多孔Ti/16Mg复合材料动电位极化曲线计算结果

    Table  3   Calculation results of potentiodynamic polarization curves for the porous Ti/16Mg composites added by 18%NH4HCO3 in different particle sizes

    粒径 / μm Ecorr / mV Icorr /
    (μA·cm‒2)
    βa / mV βc / mV Rp /
    (Ω·cm‒2)
    74~125 1239 57.754 35.906 278.525 239.125
    165~198 1214 84.073 67.081 162.996 245.445
    245~350 1200 110.922 89.081 208.516 244.333
    下载: 导出CSV

    表  4   添加不同质量分数NH4HCO3制备的多孔Ti/16Mg复合材料动电位极化曲线计算结果

    Table  4   Calculation results of potentiodynamic polarization curves for the porous Ti/16Mg composites added by NH4HCO3 in different mass fraction

    NH4HCO3
    质量分数 / %
    Ecorr / mV Icorr /
    (μA·cm‒2)
    βa / mV βc / mV Rp /
    (Ω·cm‒2)
    0 1084 73.991 193.133 198.543 574.528
    6 1112 94.770 194.859 210.694 464.324
    12 1198 45.360 46.224 126.581 324.125
    18 1214 84.073 67.081 162.996 245.445
    24 1242 38.859 13.101 254.945 139.236
    下载: 导出CSV
  • [1] 杨芳, 李延丽, 申承秀, 等. 钛及钛合金粉末制备与成形工艺研究进展. 粉末冶金技术, 2023, 41(4): 330

    Yang F, Li Y L, Shen C X, et al. Research progress on preparation and forming of titanium and titanium alloy powders. Powder Metall Technol, 2023, 41(4): 330

    [2] 张永涛, 刘汉源, 王昌, 等. 生物医用金属材料的研究应用现状及发展趋势. 热加工工艺, 2017, 46(4): 21

    Zhang Y T, Liu H Y, Wang C, et al. Development trend and research application situation of biomedical metal materials. Hot Working Technol, 2017, 46(4): 21

    [3] 崔振铎, 朱家民, 姜辉, 等. Ti及钛合金表面改性在生物医用领域的研究进展. 金属学报, 2022, 58(7): 837

    Cui Z D, Zhu J M, Jiang H, et al. Research progress of the surface modification of titanium and titanium alloys for biomedical application. Acta Mater Compos Sin, 2022, 58(7): 837

    [4] 王运锋, 何蕾, 郭薇. 医用钛合金的研究及应用现状. 钛工业进展, 2015, 32(1): 1

    Wang Y F, He L, Guo W. Research and application of medical titanium alloy. Titanium Ind Prog, 2015, 32(1): 1

    [5] 郭佳明, 梁精龙, 沈海涛, 等. 生物医用钛合金材料制备方法及应用进展. 热加工工艺, 2021, 50(20): 30

    Guo J M, Liang J L , Shen H T, et al. Preparation methods and application progress of biomedical titanium alloy materials. Hot Working Technol, 2021, 50(20): 30

    [6]

    Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater, 2014, 10(11): 4561 DOI: 10.1016/j.actbio.2014.07.005

    [7]

    Xu Z G, Smith C, Chen S, et al. Development and microstructural characterizations of Mg‒Zn‒Ca alloys for biomedical applications. Mater Sci Eng B, 2011, 176(20): 1660 DOI: 10.1016/j.mseb.2011.06.008

    [8]

    Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use in orthopedic applications. Biomaterials, 2006, 27(13): 2651

    [9]

    St-pieere J P, Gauthier M, Lefebvre L P, et al. Three-dimensional growth of differentiating MC3T3-E1 preosteoblasts on porous titanium scaffolds. Biomaterials, 2005, 26(35): 7319 DOI: 10.1016/j.biomaterials.2005.05.046

    [10]

    Lu B X, Yang F, Zhou Y, et al. Preparation of powder metallurgy titanium alloy with bimodal structure of high mechanical properties. Rare Met Mater Eng, 2022, 51(4): 1152

    [11] 沈宏飞, 尤德强, 张鹏, 等. 以NH4HCO3为造孔剂制备的多孔钛及其力学性能. 特种铸造及有色合金, 2016, 36(3): 291

    Shen H F, You D Q, Zhang P, et al. Preparation of porous titanium with NH4HCO3 as a space holder by powder metallurgy and its mechanical properties. Spec Cas Nonferrous Alloys, 2016, 36(3): 291

    [12] 谢蒙优, 石建军, 陈国平, 等. 微波烧结技术的研究进展及展望. 粉末冶金工业, 2019, 29(3): 66

    Xie M Y, Shi J J, Chen G P, et al. Research progress and prospect of microwave sintering technology. Powder Metall Ind, 2019, 29(3): 66

    [13] 廖益龙. 微波烧结技术在Ti基复合材料制备中应用研究. 科学技术创新, 2021(26): 71 DOI: 10.3969/j.issn.1673-1328.2021.26.032

    Liao Y L. Study on application of microwave sintering technology in preparation of Ti-matrix composites. Innov Sci Technol, 2021(26): 71 DOI: 10.3969/j.issn.1673-1328.2021.26.032

    [14] 亢宁宁, 陈文革, 侯蕊, 等. 微波烧结与传统烧结对纯钛组织与性能的影响. 粉末冶金技术, 2019, 37(1): 50

    Kang N N, Chen W G, Hou R, et al. Effects of microwave sintering and conventional sintering on microstructures and properties of pure titanium. Powder Metall Technol, 2019, 37(1): 50

    [15] 王瑞虎, 杨军, 邹德宁, 等. 金属材料微波烧结技术的研究进展. 材料导报, 2021, 35(23): 23153

    Wang R H, Yang J, Zou D N, et al. Recent progress on microwave sintering of metal materials. Mater Rep, 2021, 35(23): 23153

    [16] 王飞, 周新贵, 余金山, 等. 微波烧结工艺制备陶瓷材料的研究现状. 材料导报, 2011, 25(19): 28

    Wang F, Zhou X G, Yu J S, et al. Development of microwave sintering of ceramic materials. Mater Rev, 2011, 25(19): 28

    [17] 周晓璐, 张帅, 李伟, 等. 造孔剂法制备新型多孔Ti‒Nb‒Ta‒Mo‒Zr合金. 热加工工艺, 2015, 44(16): 89

    Zhou X L, Zhang S, Li W, et al. Porous Ti‒Nb‒Ta‒Mo‒Zr alloy for biomedical application fabricated by pore former method. Hot Working Technol, 2015, 44(16): 89

    [18] 许莹, 王欢欢, 王变. 医用多孔β钛合金的制备方法研究进展. 钛工业进展, 2018, 35(3): 1

    Xu Y, Wang H H, Wang B. Research progress in preparation methods of porous β-titanium alloy for medical use. Titanium Ind Prog, 2018, 35(3): 1

    [19] 王巧. 生物医用多孔Ti‒Mg复合材料的微波烧结制备及降解行为研究[学位论文]. 南昌: 南昌航空大学, 2016

    Wang Q. Degradation Behavior of Biomedical Porous Ti‒Mg Composites Prepared by Microwave Sintered [Dissertation]. Nanchang: Nanchang Hangkong University, 2016

    [20]

    Wang Y Q, Tao J, Zhang J L. Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti‒10%Mg composites. Trans Nonferrous Met Soc China, 2011, 21(5): 1074 DOI: 10.1016/S1003-6326(11)60824-8

    [21]

    Xiong J Y, Li Y C, Wang X J, et al. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti‒18Nb‒4Sn alloy for biomedical applications. Acta Biomater, 2008, 4(6): 1963 DOI: 10.1016/j.actbio.2008.04.022

    [22] 梁丹丹, 王德志, 王小鹰, 等. 医用Ti‒Mo合金的制备及性能分析. 稀有金属材料与工程, 2013, 42(12): 2607

    Liang D D, Wang D Z, Wang X Y, et al. Preparation and characteristics of the medical Ti‒Mo alloys. Rare Met Mater Eng, 2013, 42(12): 2607

    [23] 王玺涵, 李述军, 贾明途, 等. 多孔医用Ti‒24Nb‒4Zr‒8Sn合金的制备和力学性能. 材料研究学报, 2010, 24(4): 378

    Wang X H, Li S J, Jia M T, et al. Fabrication and mechanical properties of porous Ti‒24Nb‒4Zr‒8Sn alloy for biomedical applications. Chin J Mater Res, 2010, 24(4): 378

    [24]

    Oliveira C S S D, Griza S, Oliveira M V D, et al. Study of the porous Ti35Nb alloy processing parameters for implant applications. Powder Technol, 2015, 281: 91 DOI: 10.1016/j.powtec.2015.03.014

    [25] 王建忠, 敖庆波, 荆鹏, 等. 多孔钛的制备及应用. 稀有金属材料与工程, 2022, 51(5): 1907

    Wang J Z, Ao Q B, Jing P, et al. Preparation and application of porous titanium. Rare Met Mater Eng, 2022, 51(5): 1907

    [26] 尤力, 宋西平. 轧制及退火对Ti‒18Nb‒4Sn合金织构的影响. 金属学报, 2008, 44(11): 1310 DOI: 10.3321/j.issn:0412-1961.2008.11.006

    You L, Song X P. Effects of rolling and annealing on the texture of Ti‒18Nb‒4Sn alloy. Acta Metall Sin, 2008, 44(11): 1310 DOI: 10.3321/j.issn:0412-1961.2008.11.006

    [27] 李浩, 高岩, 袁斌, 等. 超弹性多孔β相Ti16Nb4Sn合金的制备及其性能. 机械工程材料, 2010, 34(3): 41

    Li H, Gao Y, Yuan B, et al. Preparation and properties of superelastic porous β-phase Ti16Nb4Sn alloy. Mater Mech Eng, 2010, 34(3): 41

    [28] 李毓轩, 崔振铎, 杨贤金, 等. 多孔Ti‒Nb‒Zr合金的孔隙特征与力学性能. 功能材料, 2011, 42(S1): 92

    Li Y X, Cui Z Z, Yang X J, et al. Pores characteristics and mechanical properties of porous Ti‒Nb‒Zr alloy. J Funct Mater, 2011, 42(S1): 92

    [29] 董晓蓉, 左孝青, 钟子龙, 等. 医用多孔Ni‒Ti形状记忆合金的制备和性能研究进展. 材料导报, 2014, 28(3): 71

    Dong X R, Zuo X Q, Zhong Z L, et al. Research progress on preparation and properties of biomedical porous Ni‒Ti shape memory alloys. Mater Rev, 2014, 28(3): 71

    [30] 麦萍, 崔旭梅, 赵朝勇, 等. 烧结工艺对多孔Ti‒5Cu合金微观结构和力学性能的影响. 钢铁钒钛, 2019, 40(3): 46

    Mai P, Cui X M, Zhao C Y, et al. Effect of sintering process on microstructure and mechanical properties of porous Ti‒5Cu alloy. Iron Steel Vanadium Titanium, 2019, 40(3): 46

    [31] 王月勤. 低模量多孔Ti‒Mg系生物复合材料的制备与性能研究[学位论文]. 南京: 南京航空航天大学, 2010

    Wang Y Q. Preparation and Properties of Porous Ti‒Mg Matrix Bio-Composites with Low Elastic Modulus [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010

    [32] 许莹, 王欢欢, 何世宇, 等. TiO2纳米管的制备及其性能研究. 钢铁钒钛, 2018, 39(4): 52 DOI: 10.7513/j.issn.1004-7638.2018.04.009

    Xu Y, Wang H H, He S Y, et al. Preparation and properties of TiO2 nanotubes. Iron Steel Vanadium Titanium, 2018, 39(4): 52 DOI: 10.7513/j.issn.1004-7638.2018.04.009

    [33] 王欢欢, 何世宇, 许莹, 等. 烧结温度对医用Ti‒29Nb‒4Mo‒13Ta‒9Zr合金性能的影响. 钢铁钒钛, 2018, 39(6): 48 DOI: 10.7513/j.issn.1004-7638.2018.06.007

    Wang H H, He S Y, Xu Y, et al. Effect of sintering temperature on properties of Ti‒29Nb‒4Mo‒13Ta‒9Zr alloy for biomedical applications. Iron Steel Vanadium Titanium, 2018, 39(6): 48 DOI: 10.7513/j.issn.1004-7638.2018.06.007

    [34]

    Kujala S, Ryhänen J, Danilova, et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials, 2003, 24(25): 4691 DOI: 10.1016/S0142-9612(03)00359-4

    [35] 赵朝勇, 张雪峰, 张磊, 等. 多孔Ti‒5Ag合金的制备及力学性能研究. 钢铁钒钛, 2018, 39(2): 49 DOI: 10.7513/j.issn.1004-7638.2018.02.008

    Zhao C Y, Zhang X F, Zhang L, et al. Preparation and mechanical properties of porous Ti‒5Ag alloy. Iron Steel Vanadium Titanium, 2018, 39(2): 49 DOI: 10.7513/j.issn.1004-7638.2018.02.008

    [36] 于振涛, 余森, 程军, 等. 新型医用钛合金材料的研发和应用现状. 金属学报, 2017, 53(10): 1238 DOI: 10.11900/0412.1961.2017.00288

    Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials. Acta Metall Sin, 2017, 53(10): 1238 DOI: 10.11900/0412.1961.2017.00288

    [37] 张冬云, 胡松涛, 陈润平, 等. 3D打印Ti6Al4V多孔材料压缩性能. 北京工业大学学报, 2021, 47(11): 1275 DOI: 10.11936/bjutxb2020020016

    Zhang D Y, Hu S T, Chen R P, et al. Compressive properties of 3d printed Ti6Al4V porous materials. J Beijing Univ Technol, 2021, 47(11): 1275 DOI: 10.11936/bjutxb2020020016

    [38] 武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225

    Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225

    [39] 李伯琼, 陆兴, 王德庆. 制备工艺对多孔钛的微观结构和压缩性能的影响. 大连铁道学院学报, 2006(3): 70

    Li B Q, Lu X, Wang D Q. The effect of processing on microstructures and mechanical properties of porous titanium. J Dalian Jiaotong Univ, 2006(3): 70

    [40]

    Wen C E, Mabuchi M, Yamada Y, et al. Processing of biocompatible porous Ti and Mg. Scr Mater, 2001(45): 1147

    [41] 于振涛, 韩建业, 麻西群, 等. 生物医用钛合金材料的生物及力学相容性. 中国组织工程研究, 2013, 17(25): 4707 DOI: 10.3969/j.issn.2095-4344.2013.25.020

    Yu Z T, Han J Y, Ma X Q, et al. Biological and mechanical compatibility of biomedical titanium alloy materials. Chin J Tissue Eng Res, 2013, 17(25): 4707 DOI: 10.3969/j.issn.2095-4344.2013.25.020

图(15)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2024-12-27

目录

    /

    返回文章
    返回