高级检索

球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响

Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys

  • 摘要: 为进一步提高FeCrAl合金的力学性能,采用机械球磨和放电等离子烧结(spark plasma sintering,SPS)技术制备了纳米ZrC颗粒弥散强化FeCrAl(ZrC‒FeCrAl)合金,通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、氧含量分析、粒度分析、X射线衍射(X-ray diffraction,XRD)分析、硬度测试、拉伸性能测试等方法,研究了球磨时间对粉末特性及合金力学性能的影响。结果表明,延长球磨时间有利于粉末颗粒细化,但氧含量过高会导致烧结材料力学性能恶化。当球磨时间为30 h时,粉末平均粒径为72.88 μm,氧含量最低,为0.14%(质量分数);球磨30 h的ZrC‒FeCrAl合金具有较好的力学性能,其放电等离子烧结样品的极限抗拉强度、延伸率和维氏硬度分别为1046 MPa、12.1%和HV 349.9。结果证实,添加纳米ZrC可以有效强化FeCrAl合金,为其在耐事故燃料包壳材料中的应用提供了数据支撑。

     

    Abstract: To enhance the mechanical properties of FeCrAl alloys, the nano ZrC particle dispersion strengthened FeCrAl (ZrC‒FeCrAl) alloys were prepared by mechanical ball milling and spark plasma sintering (SPS). The effects of ball milling time on the powder characteristics and the alloy mechanical properties were investigated. Scanning electron microscope (SEM), transmission electron microscope (TEM), oxygen content analysis, particle size analysis, X-ray diffraction (XRD) analysis, hardness tests, and tensile property tests were carried out. The results show that, prolonging the milling time is conducive to the refinement of powder particles. However, the higher oxygen content may lead to the deterioration of mechanical properties after sintering. After milling for 30 h, the average particle size of the powders is about 72.88 μm, and the oxygen content (mass fraction) is the lowest, which is 0.14%. The ZrC‒FeCrAl alloys prepared by SPS show the better mechanical properties after milling for 30 h, the ultimate tensile strength, elongation, and Vickers hardness reach 1046 MPa, 12.1%, and HV 349.9, respectively. The results confirm that, the addition of nano ZrC particles can notably improve the strength of FeCrAl alloys, which is of great significance for the practical application in the accident resistant fuel cladding materials.

     

/

返回文章
返回