Influence of pore structure on mechanical properties of 3D printing porous tungsten
-
摘要:
利用ANSYS有限元软件设计了正方体和三棱锥两种孔隙结构的多孔钨。研究发现,当分别承受点、线和面载荷时,正方体和三棱锥骨架单元受力不均匀。当骨架单元分别承受面和线载荷时,有支撑的棱柱处应力较小,没有支撑的棱柱处应力较大,并引起了较大的变形量。当骨架单元承受点载荷时,其应力和变形量均在加载处最大。采用选区激光熔化技术制备两种孔隙结构的高孔隙率多孔钨,分析了孔隙形状和尺寸对其力学性能的影响。结果表明,两种多孔钨的宏观形貌与其设计结构无明显差别,由于骨架棱柱(边)上易悬垂和粘粉导致孔隙率较设计值有所降低。预设孔隙率为50%和80%的正方体多孔钨抗拉强度分别为127.4 MPa和55.8 MPa,抗压强度分别为667.1 MPa和213.0 MPa,冲击韧性分别为6.764 J/cm2和4.492 J/cm2,硬度值相差不大。预设50%和80%孔隙率的三棱锥多孔钨抗压强度分别为231.1 MPa和65.3 MPa,冲击韧性均为2.030 J/cm2,硬度与正方体骨架相同。正方体和三棱锥多孔钨的拉伸和压缩断口形貌均呈现出典型的准解理脆性断裂特征。
Abstract:The porous tungsten with the cube and triangular pyramid shape was designed by ANSYS finite element analysis in this paper. In the results, when the point, line, and plane loads are applied, respectively, the stress on the cube and triangular pyramid skeleton units is uneven. When the skeleton unit is subjected to the plane and line loads, respectively, the stress at the supported struts is relatively small, while the stress at the unsupported struts is relatively large, causing a large amount of deformation. When the skeleton unit is subjected to the point load, the stress and deformation are both the maximum at the loading point. The porous tungsten in the shape of cube and triangular pyramid with high porosity was fabricated by selective laser melting (SLM) technique, and the effects of pore shape and size on the mechanical properties were investigated. The results show that the macrostructure of these skeleton structure is not significantly different from the designed structure, but the porosity is lower than that of the designed value, because of the hanging and sticky powders on the skeleton struts. The tensile strength of cube skeleton with 50% and 80% porosity is 127.4 MPa and 55.8 MPa, the compressive strength is 667.1 MPa and 213.0 MPa, the impact toughness is 6.764 and 4.492 J·cm−2. The compressive strength of the triangular pyramid skeleton with 50% and 80% porosity is 231.1 MPa and 65.3 MPa, the impact toughness is 2.030 J·cm−2, and the hardness is similar as that of the cube skeleton. The tensile and compressive fracture morphology of the cube and triangular porous tungsten show the typical quasi-cleavage brittle fracture.
-
Keywords:
- porous tungsten /
- pore structure /
- finite element /
- microstructure /
- mechanical properties
-
-
图 3 正方体骨架单元在不同加载模式下有限元分析应力和变形量分布云图:(a)应力,面加载;(b)变形量,面加载;(c)应力,线加载;(d)变形量,线加载;(e)应力,点加载;(f)变形量,点加载
Figure 3. Stress and deformation distribution in finite element analysis of the cube skeleton unit under different loading modes: (a) stress, plane loading; (b) deformation, plane loading; (c) stress, line loading; (d) deformation, line loading; (e) stress, point loading; (f) deformation, point loading
图 4 三棱锥骨架单元在不同加载模式下有限元分析应力和变形量分布云图:(a)应力,面加载;(b)变形量,面加载;(c)应力,线加载;(d)变形量,线加载;(e)应力,点加载;(f)变形量,点加载
Figure 4. Stress and deformation distribution in finite element analysis of the triangular pyramid skeleton unit under different loading modes: (a) stress, plane loading; (b) deformation, plane loading; (c) stress, line loading; (d) deformation, line loading; (e) stress, point loading; (f) deformation, point loading
图 7 多孔钨骨架宏观和表面显微形貌:(a)正方体骨架宏观图;(b)、(c)正方体骨架,沿打印方向;(d)三棱锥骨架宏观图;(e)、(f)三棱锥骨架,垂直打印方向
Figure 7. Macrographs and SEM images of the porous W skeleton: (a) macrographs of cube skeleton; (b), (c) cube skeleton parallel to the print direction; (d) macrographs of triangular pyramid skeleton; (e), (f) triangular pyramid skeleton perpendicular to the printing direction
密度 / (g·cm−3) 泊松比 弹性模量 / MPa 体积模量 / MPa 剪切模量 / MPa 19.5 0.28 4.1000 ×1053.1136 ×1051.6055 ×105表 2 选区激光熔化制备多孔钨工艺参数
Table 2 Process parameters of the porous tungsten skeleton prepared by SLM
激光功率 / W 扫描速度 / (mm·s−1) 铺粉层 / μm 扫描间距 / μm 光斑直径 / μm 300 450 25 60 100 表 3 正方体骨架和三棱锥骨架实测孔隙率、硬度和冲击韧性
Table 3 Measured porosity, hardness, and impact toughness of the cube and triangular pyramid skeleton
孔隙结构 设计空隙率 / % 测量孔隙率 / % 硬度,Hv 冲击韧性 / (J·cm−2) 正方体骨架 50 22.05 468.9 6.764 80 57.10 472.8 4.492 三棱锥骨架 50 53.68 473.7 2.030 80 73.79 471.3 2.030 -
[1] Pixner F, Buzolin R, Warchomicka F, et al. Wire-based electron beam additive manufacturing of tungsten. Int J Refract Met Hard Mater, 2022, 108: 105917 DOI: 10.1016/j.ijrmhm.2022.105917
[2] 陈时杰, 叶超, 柳炜, 等. 球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响. 复合材料学报, 2023, 40(8): 4531 Chen S J, Ye C, Liu W, et al. Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys. Acta Mater Compos Sin, 2023, 40(8): 4531
[3] 朱文谭, 蔡青山, 王健宁, 等. 粉末冶金共烧结制备90W−7Ni−3Fe/30CrMnSiNi2A结构复合材料的组织与力学性能. 中国有色金属学报, 2021, 31(7): 1737 DOI: 10.11817/j.ysxb.1004.0609.2021-36702 Zhu W T, Cai Q S, Wang J N, et al. Microstructure and mechanical properties of 90W−7Ni−3Fe/30CrMnSiNi2A structural composite materials prepared by powder metallurgy co-sintering. Chin J Nonferrous Met, 2021, 31(7): 1737 DOI: 10.11817/j.ysxb.1004.0609.2021-36702
[4] Wen S F, Wang C, Zhou Y, et al. High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Opt Laser Technol, 2019, 116: 128 DOI: 10.1016/j.optlastec.2019.03.018
[5] Xie J C, Lu H F, Lu J Z, et al. Additive manufacturing of tungsten using directed energy deposition for potential nuclear fusion application. Surf Coat Technol, 2021, 409: 126884 DOI: 10.1016/j.surfcoat.2021.126884
[6] Guo Z P, Wang L, Wang X Z. Additive manufacturing of W−12Ta(wt%) alloy: Processing and resulting mechanical properties. J Alloys Compd, 2021, 868: 159193 DOI: 10.1016/j.jallcom.2021.159193
[7] Braun J, Kaserer L, Stajkovic J, et al. Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms. J Refract Met Hard Mater, 2019, 84: 104999 DOI: 10.1016/j.ijrmhm.2019.104999
[8] Li R, Qin M L, Chen Z, et al. Porous structure uniformity investigation of tungsten matrix prepared by jet milled and annealed tungsten powder. Powder Technol, 2018, 339: 192 DOI: 10.1016/j.powtec.2018.08.021
[9] Ge S, Zhang J, Xu Z G, et al. Achieving porous tungsten with high porosity by selective dissolution of W−Fe alloy. Scr Mater, 2021, 198: 113830 DOI: 10.1016/j.scriptamat.2021.113830
[10] Selcuk C, Wood J V. Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J Mater Process Technol, 2005, 170(1-2): 471 DOI: 10.1016/j.jmatprotec.2005.05.037
[11] 肖彬, 曹顺华, 李世康, 等. 连续梯度多孔钨坯的制备. 稀有金属与硬质合金, 2017, 45(3): 15 Xiao B, Cao S H, Li S K, et al. Preparation of continuous gradient porous tungsten blank. Rare Met Cement Carb, 2017, 45(3): 15
[12] Shen Q, Zhou D Q, Zhang J, et al. Study on preparation and property of porous tungsten via tape-castin. Int J Refract Met Hard Mater, 2017, 69: 27 DOI: 10.1016/j.ijrmhm.2017.07.018
[13] 杨广宇, 刘楠, 贾亮, 等. 钨铜复合材料用钨骨架的制备与压缩性能. 粉末冶金材料科学与工程, 2017, 22(5): 701 DOI: 10.3969/j.issn.1673-0224.2017.05.017 Yang G Y, Liu N, Jia L, et al. Fabrication and compression property of tungsten skeleton for tungsten-copper composite. Mater Sci Eng Powder Metall, 2017, 22(5): 701 DOI: 10.3969/j.issn.1673-0224.2017.05.017
[14] Zhou K, Chen W G, Yang Y N, et al. Microstructure and mechanical behavior of porous tungsten skeletons synthesized by selected laser melting. Int J Refract Met Hard Mater, 2022, 103: 105769 DOI: 10.1016/j.ijrmhm.2021.105769
[15] 路红波, 蔡玉洁, 李书. 基于单胞代理模型的热弹性点阵结构优化方法. 北京航空航天大学学报, 2023, 49(12): 3432 Lu H B, Cai Y J, Li S. Optimization method of thermo-elastic lattice structure based on surrogate models of microstructures. J Beijing Univ Aeronaut Astronaut, 2023, 49(12): 3432
[16] Nguyen Van V, Wu C L, Vogel F, et al. Mechanical performance of fractal-like cementitious lightweight cellular structures: Numerical investigations. Compos Struct, 2021, 269(1): 114050
[17] 王展光, 蔡萍, 应建中, 等. 闭孔泡沫铝的力学性能和吸能能力. 材料导报, 2012, 26(10): 152 DOI: 10.3969/j.issn.1005-023X.2012.10.042 Wang Z G, Cai P, Ying J Z, et al. Mechanical properties and energy absorption capability of closed-cell Al foam. Mater Rev, 2012, 26(10): 152 DOI: 10.3969/j.issn.1005-023X.2012.10.042
[18] 井瑞. 铝合金三角形截面空间桁架结构稳定性能研究. 信息记录材料, 2020, 21(1): 23 Jing R. Study on stability of aluminum alloy triangular section space truss structure. Inf Record Mater, 2020, 21(1): 23
[19] 肖李军. 动静载荷作用下3D打印多孔钛合金材料力学行为研究[学位论文]. 北京: 北京理工大学, 2018 Xiao L J. Investigation on the Mechanical Performance of 3D-Printed Cellular Titanium Alloy Subjected to Static and Dynamic Loadings [Dissertation]. Beijing: Beijing Institute of Technology, 2018
[20] Tolias P. Analytical expressions for thermophysical properties of solid and liquid beryllium relevant for fusion applications. Nucl Mater Energy, 2022, 31: 101195 DOI: 10.1016/j.nme.2022.101195
[21] Zhao S, Li S J, Hou W T, et al. The influence of cell morphology on the compressive fatigue behavior of Ti−6Al−4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater, 2016, 59: 251 DOI: 10.1016/j.jmbbm.2016.01.034
[22] 吴艳琳, 王勇, 乔丽英, 等. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究. 功能材料, 2018, 49(6): 6080 Wu Y L, Wang Y, Qiao L Y, et al. Study on structure and properties of hexagonal porous Ti6Al4V alloy via selective laser melting. J Funct Mater, 2018, 49(6): 6080
[23] 宋荣伟. 悬垂结构和多孔结构的选择性激光熔化成型研究[学位论文]. 杭州: 浙江工业大学, 2016 Song R W. Studies on Overhanging Structure and Porous Structure During Selective Laser Melting [Dissertation]. Hangzhou: Zhejiang University of Technology, 2016
[24] 马玉天, 许佳玉, 高钰璧, 等. SLM成形Inconel 738合金缺陷的演变及形成机理. 材料导报, 2022, 36(13): 166 DOI: 10.11896/cldb.21040269 Ma Y T, Xu J Y, Gao Y B, et al. Evolution and formation mechanism of defect in SLM-built inconel 738 alloy. Mater Rep, 2022, 36(13): 166 DOI: 10.11896/cldb.21040269
[25] Xu Z Z, Dong Z Q, Yu Z H, et al. Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy. Trans Nonferrous Met Soc China, 2020, 30(5): 1277 DOI: 10.1016/S1003-6326(20)65295-5
[26] 邓澄, 蒋梦龙, 周圣丰. 激光增材制造纯钨及钨铜复合材料的组织与性能. 特种铸造及有色合金, 2022, 42(7): 804 Deng C, Jiang M L, Zhou S F. Microstructure and properties of pure tungsten and tungsten copper composites by selective additive manufacturing. Spec Cast Nonferrous Alloys, 2022, 42(7): 804
[27] 周兵, 刘海波, 张尚洲. 成形方法对多孔钨组织和性能的影响. 烟台大学学报(自然科学与工程版), 2017, 30(3): 227 Zhou B, Liu H B, Zhang S Z. Influence of pressing methods on microstructure and microhardness of porous tungsten. J Yantai Univ Nat Sci Eng, 2017, 30(3): 227
[28] 龚明明, 谭丽丽, 耿芳, 等. 新型多孔镁压缩性能的有限元分析. 金属学报, 2008, 44(2): 237 DOI: 10.3321/j.issn:0412-1961.2008.02.021 Gong M M, Tan L L, Geng F, et al. Finite element analysis on compressive property of a new type of porous magnesium. Acta Metall Sin, 2008, 44(2): 237 DOI: 10.3321/j.issn:0412-1961.2008.02.021
[29] Leary M, Mazur M, Williams H, et al. Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Mater Des, 2018, 157: 179 DOI: 10.1016/j.matdes.2018.06.010
[30] Harris J A, Winter R E, Mcshane G J. Impact response of additively manufactured metallic hybrid lattice materials. Int J Impact Eng, 2017, 104: 177 DOI: 10.1016/j.ijimpeng.2017.02.007
[31] 苏淑兰, 饶秋华, 贺跃辉. 孔隙率对Ti−Al金属间化合物多孔材料拉伸性能的影响. 稀有金属材料与工程, 2014, 43(5): 1258 Su S L, Rao Q H, He Y H. Effects of porosity on tensile properties of the Ti−Al intermetallic compound porous material. Rare Met Mater Eng, 2014, 43(5): 1258
[32] Guo Y, Chen C, Tan L M, et al. The role of pore structures on the fatigue properties of additively manufactured porous tantalum scaffolds produced by electron beam powder bed fusion. J Mater Res Technol, 2022, 19: 3461 DOI: 10.1016/j.jmrt.2022.06.096
[33] 褚夫众, 张曦, 黄文静, 等. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响: 综述. 材料导报, 2021, 35(11): 11111 Chu F Z, Zhang X, Huang W J, et al. The formation mechanism and effect on mechanical properties of defects of aluminum alloy by selective laser melting: a review. Mater Rep, 2021, 35(11): 11111