高级检索

高择优取向P型Bi2Te3基材料制备及性能

苏紫珊, 蔡新志, 熊平尚, 童培云, 朱刘

苏紫珊, 蔡新志, 熊平尚, 童培云, 朱刘. 高择优取向P型Bi2Te3基材料制备及性能[J]. 粉末冶金技术, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009
引用本文: 苏紫珊, 蔡新志, 熊平尚, 童培云, 朱刘. 高择优取向P型Bi2Te3基材料制备及性能[J]. 粉末冶金技术, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009
SU Zishan, CAI Xinzhi, XIONG Pingshang, TONG Peiyun, ZHU Liu. Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation[J]. Powder Metallurgy Technology, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009
Citation: SU Zishan, CAI Xinzhi, XIONG Pingshang, TONG Peiyun, ZHU Liu. Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation[J]. Powder Metallurgy Technology, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009

高择优取向P型Bi2Te3基材料制备及性能

详细信息
    通讯作者:

    蔡新志: E-mail: xinzhi.cai@vitalchem.com

  • 中图分类号: TF125;TB34

Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation

More Information
  • 摘要:

    以Bi0.4Sb1.6Te3+3%Te(质量分数)熔炼晶棒为原料,利用水冷铜坩埚磁悬浮熔炼技术制备出取向性非常好的合金铸锭,将合金铸锭锤磨破碎筛分,得到P型Bi2Te3基合金粉体,采用真空热压烧结技术制备沿(00l)晶面择优取向的P型Bi2Te3基热电材料,研究铸锭、合金粉体和热压烧结块体的微观形貌和择优取向,以及粉体粒径对烧结块体电性能的影响。结果表明,经过急冷破碎筛分后的粉体沿(00l)晶面具有高择优取向。使用100~200目粒度的粉体在500 ℃、40 MPa烧结条件下制备样品,其功率因子达到44.5 μW·cm−1·K−2,可切割厚度为0.3 mm的薄片,合格率超过90%。与区熔N型匹配常规127对4 cm×4 cm半导体致冷器,型号为TEC1-12706器件的最大温差可达70 ℃,为高性能Bi2Te3基热电材料制备提供了方向。

    Abstract:

    Using the Bi0.4Sb1.6Te3+3%Te (mass fraction) melting crystal rods as the raw materials, the alloy ingots with good orientation were prepared by water-cooled copper crucible maglev melting technology. The P-type Bi2Te3-based alloy powders were obtained by grinding and sieving the alloy ingots with hammer. The P-type Bi2Te3-based thermoelectric materials with the preferred orientation along the (00l) crystal face were prepared by vacuum hot pressing sintering technology. The micro-morphology and preferred orientation of the ingots, alloy powders and hot pressed sintered blocks were studied, as well as the effect of particle size on the electrical properties of the sintered blocks. The results show that the powders after quenching, crushing, and screening are highly oriented along the (00l) crystal face. The blocks prepared by using 100~200 mesh size powders sintered at 500 ℃ and 40 MPa have the power factor of 44.5 μW·cm−1·K−2, which can cut the thin slices with the thickness of 0.3 mm, with the pass rate of more than 90%. Matching the conventional 127 pair 4 cm×4 cm thermoelectric cooler (TEC) with the zone melting N-type, the maximum temperature difference of the model TEC1-12706 devices can reach 70 ℃, providing the preparation direction of the high-performance Bi2Te3-based thermoelectric materials.

  • 图  1   熔铸铸锭断口的外观形貌

    Figure  1.   Fracture appearance of the casted ingots

    图  2   熔铸铸锭不同部位的X射线衍射图谱

    Figure  2.   XRD patterns of the casted ingots in different parts

    图  3   不同粒径粉体的粒度分布

    Figure  3.   Particle size distribution of the powders in different particle size

    图  4   不同粒径粉体样品的显微形貌:(a)100~200目;(b)200~325目;(c)325目筛下物;(d)100目筛下物

    Figure  4.   SEM images of the powders in different particle size: (a) 100~200 mesh; (b) 200~325 mesh; (c) under 325 mesh screen; (d) under 100 mesh screen

    图  5   不同粒径粉体的X射线衍射图谱

    Figure  5.   XRD patterns of the powders in different particle size

    图  6   烧结块体样品的X射线衍射图谱

    Figure  6.   XRD patterns of the sintered billets

    图  7   不同粒径粉体的烧结块体断口形貌:(a)100~200目;(b)200~325目;(c)325目筛下物;(d)100目筛下物

    Figure  7.   Fracture morphology of the sintered billets prepared by the powders in different particle size: (a) 100~200 mesh; (b) 200~325 mesh; (c) under 325 mesh screen; (d) under 100 mesh screen

    图  8   烧结块体样品的电学性能:(a)电导率;(b)Seebeck系数;(c)功率因子

    Figure  8.   Electrical properties of the sintered bulk samples: (a) electrical conductivity; (b) Seebeck coefficient; (c) powder factor

    图  9   半导体致冷器外观图

    Figure  9.   Appearance of the TEC device

    表  1   不同粒径粉体沿(00l)方向的取向因子

    Table  1   Orientation factor of the powders in different particle size along (00l) direction

    样品取向因子,F
    100目筛下物0.15
    100~200目0.35
    200~325目0.45
    325目筛下物0.13
    下载: 导出CSV

    表  2   烧结块体样品沿(00l)方向的取向因子

    Table  2   Orientation factor of the sintered billets along (00l) direction

    样品取向因子,F
    100目筛下物0.26
    100~200目0.28
    200~325目0.30
    325目筛下物0.45
    下载: 导出CSV
  • [1] 郭涛, 李硕, 姚雅萱, 等. Bi–Te基薄膜热电材料的研究进展. 材料导报, 2022, 36(4): 131

    Guo T, Li S, Yao Y X, et al. Progress of Bi–Te based thin film thermoelectric materials. Mater Rep, 2022, 36(4): 131

    [2] 阚宗祥, 项求胜, 陈磊, 等. Bi2Te3基区熔晶棒头尾料的资源化处理与热电性能优化. 有色金属工程, 2019, 9(4): 20

    Kan Z X, Xiang Q S, Chen L, et al. Resource processing and thermoelectric properties optimization of Bi2Te3 base zone melting crystals bar head and tail. Nonferrous Met Eng, 2019, 9(4): 20

    [3]

    Qiu J H, Yan Y G, Xie H Y, et al. Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Sci China Mater, 2021, 64(6): 1507

    [4] 王晴, 刘子杨, 赵沙沙, 等. Bi2Te3基热电材料的电输运性能研究进展. 河北大学学报(自然科学版), 2021, 41(4): 349

    Wang Q, Liu Z Y, Zhao S S, et al. Research progress of electrical transport properties of Bi2Te3-based thermoelectric materials. J Hebei Univer Nat Sci, 2021, 41(4): 349

    [5]

    Fan P, Li R Y, Chen Y X, et al. High thermoelectric performance achieved in Bi0.4Sb1.6Te3 films with high (00l) orientation via magnetron sputtering. J Eur Ceram Soc, 2020, 40(12): 4016

    [6] 陈赟斐, 魏锋, 王赫, 等. 高性能Bi2Te3- xSe x热电薄膜的可控生长. 物理学报, 2021, 70(20): 27303

    Chen Y F, Wei F, Wang H, et al. Structural control for high performance Bi2Te3− xSe x thermoelectric thin films. Acta Phys Sin, 2021, 70(20): 27303

    [7]

    Wu Z H, Mu E Z, Che Z X, et al. Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance. J Alloys Compd, 2020, 828: 154239 DOI: 10.1016/j.jallcom.2020.154239

    [8] 石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4

    Shi J L, Fei J, Zhang B P, et al. Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering. Powder Metall Technol, 2021, 39(1): 4

    [9] 王小宇, 江威, 朱彬, 等. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响. 粉末冶金技术, 2022, 40(1): 53

    Wang X Y, Jiang W, Zhu B, et al. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method. Powder Metall Technol, 2022, 40(1): 53

    [10]

    Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109 DOI: 10.1126/science.aaa4166

    [11] 魏少红, 王忠, 陈晖, 等. 急冷甩带对Bi2Te2.7Se0.3热电材料微观结构与电性能的影响. 稀有金属, 2009, 33(4): 534

    Wei S H, Wang Z, Chen H, et al. Effect of melt spinning process on microstructure and electrical properties of Bi2Te2.7Se0.3 thermoelectric material. Chin J Rare Met, 2009, 33(4): 534

    [12]

    Cai X Z, Fan X A, Rong Z Z, et al. Improved thermoelectric properties of Bi2Te3− xSe x alloys by melt spinning and resistance pressing sintering. J Phys D Appl Phys, 2014, 47(11): 115101 DOI: 10.1088/0022-3727/47/11/115101

    [13] 刘国栋, 李养贤, 胡海宁, 等. 甩带Fe85Ga15合金的巨磁致伸缩研究. 物理学报, 2004, 53(9): 3191 DOI: 10.7498/aps.53.3191

    Liu G D, Li Y X, Hu H N, et al. Giant magnetostriction of melt-spun Fe85Ga15 ribbons. Acta Phys Sin, 2004, 53(9): 3191 DOI: 10.7498/aps.53.3191

    [14]

    Shang H J, Ding F Z, Deng Y, et al. Highly (00l)-oriented Bi2Te3/Te heterostructure thin films with enhanced power factor. Nanoscale, 2018, 10(43): 20189 DOI: 10.1039/C8NR07112H

    [15]

    Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 DOI: 10.1016/0022-1902(59)80070-1

    [16] 蔡新志, 朱刘. 热压P型Bi2Te3基合金的结构演化和热电性能. 热加工工艺, 2018, 47(13): 79

    Cai X Z, Zhu L. Structural evolution and thermoelectric properties of hot pressed P-type Bi2Te3-base alloy. Hot Work Technol 2018, 47(13): 79

    [17]

    Schultz J M, Mchugh J P, Tiller W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys, 1962, 33(8): 2443 DOI: 10.1063/1.1728990

    [18]

    Hu J, Fan X A, Zhang C C, et al. The initial powder-refinement-induced donor-like effect and nonlinear change of thermoelectric performance for Bi2Te3-based polycrystalline bulks. Semicond Sci Technol, 2017, 32(7): 075004 DOI: 10.1088/1361-6641/aa6b89

图(9)  /  表(2)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  22
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-18
  • 录用日期:  2023-06-18
  • 网络出版日期:  2023-06-26
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回