高级检索

增材制造技术在金刚石工具制备中的应用研究进展

魏瑛康, 李嘉旭, 王岩, 王建勇, 张亮亮, 武玺旺, 刘世锋

魏瑛康, 李嘉旭, 王岩, 王建勇, 张亮亮, 武玺旺, 刘世锋. 增材制造技术在金刚石工具制备中的应用研究进展[J]. 粉末冶金技术, 2024, 42(6): 652-664, 673. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030001
引用本文: 魏瑛康, 李嘉旭, 王岩, 王建勇, 张亮亮, 武玺旺, 刘世锋. 增材制造技术在金刚石工具制备中的应用研究进展[J]. 粉末冶金技术, 2024, 42(6): 652-664, 673. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030001
WEI Yingkang, LI Jiaxu, WANG Yan, WANG Jianyong, ZHANG Liangliang, WU Xiwang, LIU Shifeng. Research progress on additive manufacturing technology in diamond tool preparation[J]. Powder Metallurgy Technology, 2024, 42(6): 652-664, 673. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030001
Citation: WEI Yingkang, LI Jiaxu, WANG Yan, WANG Jianyong, ZHANG Liangliang, WU Xiwang, LIU Shifeng. Research progress on additive manufacturing technology in diamond tool preparation[J]. Powder Metallurgy Technology, 2024, 42(6): 652-664, 673. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030001

增材制造技术在金刚石工具制备中的应用研究进展

基金项目: 国家重点研发计划资助项目(2021YFB3701802);西安市高校院所科技人员服务企业项目(2022JH-RYFW-0198);中国博士后科学基金资助项目(2021M702554);陕西省自然科学基金资助项目(2022JM-259)
详细信息
    通讯作者:

    刘世锋: E-mail: liushifeng66@126.com

  • 中图分类号: TF125;TG142.71

Research progress on additive manufacturing technology in diamond tool preparation

More Information
  • 摘要:

    金刚石具有较高硬度和良好的耐磨性,是制备切削等加工工具的理想材料。相比传统制造技术,增材制造技术能从根本上解决复杂结构件创新设计和高效成型的问题,是高性能金刚石工具制造的潜在有效方法。本文介绍了选择性激光烧结、选择性激光熔化、立体光固化、浆料直写成型及熔融沉积成型烧结等主流增材制造技术的基本原理和特点,分析了不同增材制造技术在制备金刚石砂轮、金刚石钻头和金刚石锯片工具方面的适用性及工具服役性能,总结了增材制造金刚石工具在成型过程中存在的典型问题并给出了相应的解决思路。

    Abstract:

    Due to the high hardness and excellent wear resistance, the diamond is widely used in the preparation of cutting and other machining tools. Compared to the traditional manufacturing technology, the additive manufacturing can fundamentally solve the problems of innovative design and efficient fabrication for the complex structural components, which is known as a potential effective method for the preparation of high-performance diamond tools. The basic principles and characteristics of the major additive manufacturing technologies were introduced in this paper, such as selective laser sintering (SLS), selective laser melting (SLM), stereo lightgrapy apparatus (SLA), direct ink writing (DIW), and fused deposition modeling (FDM). The applicability and performance of the manufactured tools prepared by additive manufacturing were analyzed, such as diamond grinding wheels, diamond drill bits, and diamond saw blade tools. Finally, the typical problems and the corresponding solutions in the forming process of additive manufactured diamond tools were summarized and provided, respectively.

  • 图  1   选择性激光烧结技术原理示意图[27]

    Figure  1.   Schematic diagram of the SLS technology[27]

    图  2   选择性激光熔化技术原理示意图[24]

    Figure  2.   Schematic diagram of the SLM technology[24]

    图  3   立体光固化技术原理示意图[41]

    Figure  3.   Schematic diagram of the SLA technology[41]

    图  4   直写成型技术技术原理示意图[24]

    Figure  4.   Schematic diagram of the DIW technology[24]

    图  5   熔融沉积成型烧结技术原理示意图[54]

    Figure  5.   Schematic diagram of the FDM technology[54]

    图  6   880 ℃熔融沉积成型样品中金刚石颗粒典型热损伤特征[57]:(a)底部;(b)顶部;(c)底部;(d)底部

    Figure  6.   Typical thermal damage characteristics of the diamond particles in FDM samples sintered at 880 ℃[57]: (a) bottom; (b) top; (c) bottom; (d) bottom

    图  7   选择性激光熔化成型不同结构金刚石砂轮的表面磨损形貌[58]:(a)八面体结构;(b)蜂窝结构;(c)实体结构;(d)磨削前砂轮表面(e)磨削后砂轮表面;(f)磨削过程中形成的切屑槽

    Figure  7.   Surface wear morphology of SLM formed diamond grinding wheels with different structures[58]: (a) octahedral structure; (b) honeycomb structure; (c) physical structure; (d) grinding wheel surface before grinding; (e) grinding wheel surface after grinding; (f) chip grooves formed during grinding

    图  8   选择性激光熔化成型不同结构金刚石砂轮磨损表面粗糙度与磨削时间(a)及磨削深度(b)关系[58]

    Figure  8.   Relationship between the surface roughness and grinding time (a) and grinding depth (b) of the diamond grinding wheels with different structures formed by SLM [58]

    图  9   无流道砂轮(G1)和有流道砂轮(G2)磨削玻璃(a)、氧化铝陶瓷(b)和硬质合金(c)时的磨削力[59]

    Figure  9.   Grinding forces of grinding wheels with runnerless wheels (G1) and runnered wheels (G2) for grinding glass (a), alumina ceramics (b), and cemented carbide (c)[59]

    图  10   选择性激光烧结成型内冷孔的金刚石砂轮孔径和孔数对磨削玻璃和硬质合金磨削力的影响[60]:(a)孔径-玻璃;(b)孔径-硬质合金;(c)孔数-硬质合金

    Figure  10.   Influence of hole diameter and hole number on the grinding force for the SLS formed diamond grinding wheels[60]: (a) hole diameter-glass; (b) hole diameter-cemented carbide; (c) hole number-cemented carbide

    图  11   选择性激光烧结成型金刚石砂轮在添加和不添加白玉钢后的硬度和抗弯强度[60]

    Figure  11.   Hardness and flexural strength of the SLS molded diamond grinding wheels with and without white jade steel[60]

    图  12   增材制造栅格状金刚石钻头结构[12]

    Figure  12.   Structure of the grid shaped diamond drill bit by additive manufacturing [12]

    图  13   烧结温度对选择性激光烧结技术制备金刚石钻头基体材料Inconel718和CoCrMo性能的影响[66]:(a)硬度和耐磨性;(b)弯曲强度

    Figure  13.   Effect of sintering temperature on the physical properties of the SLS formed diamond bit substrate Inconel718 and CoCrMo[66]: (a) hardness and wear resistance ; (b) bending strength

    图  14   不同刀头类型的金刚石锯片[68]

    Figure  14.   Diamond saw blades with different blade types[68]

    图  15   选择性激光烧结成型CoCrMo超薄金刚石锯片(a)与熔融沉积成型烧结成型CoCuSn基超薄金刚石生坯(b)[40]

    Figure  15.   SLS-formed CoCrMo ultra-thin diamond saw blades (a) and FDM-formed CoCuSn based ultra-thin diamond billets (b)[40]

    表  1   几种主流增材制造技术在金刚石工具制备领域的应用

    Table  1   Applicability of the major additive manufacturing technology in the diamond tool preparation

    增材制造技术原料种类胎体类型成形精度,L / mm相对成本优势
    选择性激光烧结树脂/金属粉末0.05~0.20相对密度和材料利用率高
    选择性激光熔化金属粉末±0.05较高抗疲劳寿命和断裂韧性高,孔隙率低
    立体光固化树脂浆料>0.10强度高,加工速度快,孔隙率低
    浆料直写成型陶瓷浆料0.10~1.00工艺技术简单,材料利用率高
    熔融沉积成型烧结金属喂料0.20~0.60精度高,表面品质好
    下载: 导出CSV

    表  2   烧结温度对熔融沉积成型烧结和粉末热压烧结成型的CoCuSn基金刚石复合材料性能的影响[40]

    Table  2   Effect of the sintering temperature on the properties of the CoCuSn-based corundum composites formed by FDM and hot pressing sintering[40]

    温度 / ℃熔融沉积成型烧结热压烧结
    硬度,HRB抗弯强度 / MPa相对密度 / %硬度,HRB抗弯强度 / MPa相对密度 / %
    82093.0873.692.9393.4963.294.92
    83093.3909.093.9393.9976.795.13
    84094.5986.894.5495.31031.195.33
    85094.4932.294.4994.8978.495.27
    86093.9913.394.2894.2969.195.16
    下载: 导出CSV

    表  3   选择性激光烧结制备金刚石砂轮的规格[60]

    Table  3   Specifications of the selective laser sintered diamond grinding wheels[60]

    砂轮编号各成分含量冷却孔尺寸与数量
    尼龙质量分数 / %玻璃质量分数 / %白刚玉质量分数 / %金刚石体积分数 / %直径 / mm数量 / 个
    G167.520012.5
    G21.590
    G32.590
    G465.520212.5
    G51.590
    G61.5120
    下载: 导出CSV

    表  4   选择性激光烧结技术制备的金刚石钻头基体材料网格片切割5种岩石测试[66]

    Table  4   Cutting testing of the SLS formed diamond drill bit matrix material mesh[66]

    岩石类型 可钻性分类 抗压强度 / MPa 切割寿命 / 次数
    网格件厚度=0.5 mm 网格件厚度=0.6 mm 网格件厚度=0.7 mm
    粗粒白砂岩 3~4 50 3 >30 >30
    细粒白砂岩 5 60~70 >30 >30
    石板 6~7 90 >30 >30
    粗粒花岗岩 8~9 120 18 >30
    细粒花岗岩 10~11 160 >30
    下载: 导出CSV

    表  5   目前增材制造金刚石工具的材料及工艺参数

    Table  5   Current materials and process parameters for additive manufacturing of diamond tools

    类型 增材制造技术 胎体 材料 工艺参数 结构 优势
    砂轮选择性激光烧结金属YG15硬质合金激光功率25 W、扫描速度2000 mm s‒1、层厚100 μm、烧结温度171.5 ℃内冷却流道磨削效率高、
    寿命长
    钻头选择性激光烧结金属Inconel 718合金
    Co‒Cr‒Mo合金
    烧结温度>900 ℃栅格状钻探压力大、钻孔效率高
    锯片选择性激光烧结金属CoCuSn合金层厚50 μm超薄片状成型尺寸精度高、成本低
    砂轮选择性激光熔化金属AlSi10Mg合金激光功率300 μm、扫描速度2.5m s‒1、层厚30 μm蜂窝状、八面体和实体磨削效率高、
    寿命长
    砂轮立体光固化树脂UV-MI-25N光固化树脂结合剂功率1000 W、紫外波长365 nm磨粒三维有序
    排布状
    硬度高、寿命长
    砂轮浆料直写成型陶瓷金刚石磨料/玻璃化粘结浆料打印速度3~10 mm s‒1、喷嘴半径1.4~1.6 mm、温度20~35 ℃蜂窝状排屑性能好、
    散热快
    锯片熔融沉积成型烧结金属CoCuSn合金打印速度40 mm·s‒1、层厚100 μm、喷嘴温度160 ℃超薄片状合金化好、相对密度高、可批量生产
    下载: 导出CSV
  • [1] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展. 材料导报, 2020, 34(23): 23138

    Long W M, Hao Q L, Fu Y C, et al. Research progress of filler metals for diamond tools. Mater Rep, 2020, 34(23): 23138

    [2] 秦建, 杨骄, 龙伟民, 等. 金刚石及其复合材料增材技术研究进展. 焊接学报, 2022, 43(8): 102

    Qin J, Yang J, Long W M, et al. Research progress of additive technology of diamond and its composite materials. Trans China Weld Inst, 2022, 43(8): 102

    [3] 张旺玺, 梁宝岩, 李启泉. 超硬材料合成方法、结构性能、应用及发展现状. 超硬材料工程, 2021, 33(1): 30

    Zhang W X, Liang B Y, Li Q Q. Review on the application, structural and properties, development and synthesis methods of superhard materials. Superhard Mater Eng, 2021, 33(1): 30

    [4] 王建. 超硬材料刀具在机械加工中的应用研究. 中国设备工程, 2021(24): 122

    Wang J. Research on the application of superhard material tool in machining. China Plant Eng, 2021(24): 122

    [5] 吴燕平, 燕青芝. 金属结合剂金刚石工具研究进展. 金刚石与磨料磨具工程, 2019, 39(2): 37

    Wu Y P, Yan Q Z. Research progress of metal bonded diamond tools. Diamond Abras Eng, 2019, 39(2): 37

    [6] 吕智, 谢志刚, 林峰, 等. 超硬材料行业技术发展现状与展望. 超硬材料工程, 2017, 29(5): 47

    Lü Z, Xie Z G, Lin F, et al. Current situation and expectation of the superhard material industry technology. Superhard Mater Eng, 2017, 29(5): 47

    [7] 前瞻产业研究院. 中国超硬材料类商品行业出口现状与竞争格局分析. 超硬材料工程, 2020, 32(5): 43

    Forward Looking Industry Research Institute. Analysis of export status and competition pattern of China’s superhard materials industry. Superhard Mater Eng, 2020, 32(5): 43

    [8] 马成新, 史小华. 浅谈金刚石工具的现状与发展趋势. 超硬材料工程, 2015, 27(5): 45

    Ma C X, Shi X H. A discussion on the current status and development trend of diamond tools. Superhard Mater Eng, 2015, 27(5): 45

    [9] 张绍和, 唐健, 周侯, 等. 3D打印技术在金刚石工具制造中的应用探讨. 金刚石与磨料磨具工程, 2018, 38(2): 51

    Zhang S H, Tang J, Zhou H, et al. Three-dimensional printing in the application diamond tool manufacturing. Diamond Abras Eng, 2018, 38(2): 51

    [10]

    Liu R J, Cao Y B, Yan C L, et al. Preparation and characterization of diamond-silicon carbide-silicon composites by gaseous silicon vacuum infiltration process. J Superhard Mater, 2014, 36: 410 DOI: 10.3103/S1063457614060069

    [11] 于奇, 马佳, 龙伟民, 等. 硅黄铜预合金粉末在金刚石工具中的应用. 粉末冶金技术, 2020, 38(3): 206

    Yu Q, Ma J, Long W M, et al. Application of silicon brass pre-alloyed powder in diamond tools. Powder Metall Technol, 2020, 38(3): 206

    [12] 肖长江, 窦志强, 李娟, 等. 铜基预合金粉末制备金刚石锯片的性能研究. 粉末冶金技术, 2018, 36(4): 287

    Xiao C J, Dou Z Q, Li J, et al. Study on the properties of diamond saw blade prepared by Cu-based pre-alloyed powder. Powder Metall Technol, 2018, 36(4): 287

    [13] 王闯, 张效芬, 王长福, 等. 粉末冶金Cu基金刚石工具的研究现状及进展. 粉末冶金技术, 2012, 30(2): 140

    Wang C, Zhang X F, Wang C F, et al. Current research situation and development of Cu-based diamond tool made by powder metallurgy. Powder Metall Technol, 2012, 30(2): 140

    [14] 吴颖. 电镀金刚石工具的应用现状及改进研究. 热加工工艺, 2015, 44(18): 18

    Wu Y. Application status and improved research of electroplated diamond tools. Hot Working Technol, 2015, 44(18): 18

    [15] 毛雅梅, 黑鸿君, 高洁, 等. 钎焊金刚石研究进展及其工具的应用. 机械工程学报, 2022, 58(4): 80 DOI: 10.3901/JME.2022.04.080

    Mao Y M, Hei H J, Gao J, et al. Research progress of brazing diamond and application of tools. Chin J Mech Eng, 2022, 58(4): 80 DOI: 10.3901/JME.2022.04.080

    [16] 吴人洁. 金属基复合材料的发展现状与应用前景. 航空制造技术, 2001(3): 19

    Wu R J. Development situation and application prospect of metal matrix composites. Aeronaut Manuf Technol, 2001(3): 19

    [17] 唐弋昊, 周佳骏, 邹阳, 等. 激光选区烧结金刚石/碳化硅复合材料性能研究. 化学与生物工程, 2021, 38(9): 42

    Tang Y H, Zhou J J, Zou Y, et al. Properties of diamond/SiC composites prepared by selective laser sintering. Chem Bioeng, 2021, 38(9): 42

    [18] 刘江伟, 国凯, 王广春, 等. 金属基材料激光增材制造材料体系与发展现状. 激光杂志, 2020, 41(3): 6

    Liu J W, Guo K, Wang G C, et al. Materials and development states of laser additive manufactured metal-based alloys. Laser J, 2020, 41(3): 6

    [19] 何灿群, 叶丹澜, 张雯, 等. 增材制造及其在设计中的应用研究综述. 包装工程, 2021, 42(16): 1

    He C Q, Ye D L, Zhang W, et al. Summary of research on additive manufacturing and its application in design. Packag Eng, 2021, 42(16): 1

    [20] 高超峰, 余伟泳, 朱权利, 等. 3D打印用金属粉末的性能特征及研究进展. 粉末冶金工业, 2017, 27(5): 53

    Gao C F, Yu W Y, Zhu Q L, et al. Performance characteristics and research progress of metal powder for 3D printing. Powder Metall Ind, 2017, 27(5): 53

    [21] 纪宏超, 张雪静, 裴未迟, 等. 陶瓷3D打印技术及材料研究进展. 材料工程, 2018, 46(7): 19

    Ji H C, Zhang X J, Pei W C, et al. Research progress of ceramic 3D printing technology and materials development. J Mater Eng, 2018, 46(7): 19

    [22] 陶亚坤, 甘杰, 周燕, 等. 增材制造金刚石工具研究现状及展望. 金刚石与磨料磨具工程, 2022, 42(5): 511

    Tao Y K, Gan J, Zhou Y, et al. Research status and prospect of additive manufacturing diamond tools. Diamond Abras Eng, 2022, 42(5): 511

    [23] 王建宇, 黄国钦. 金刚石磨粒工具增材制造技术现状及展望. 金刚石与磨料磨具工程, 2022, 42(3): 307

    Wang J Y, Huang G Q. Review on manufacturing diamond abrasive tools by additive manufacturing technology. Diamond Abras Eng, 2022, 42(3): 307

    [24] 张云鹤, 黄景銮, 宋运运, 等. 3D打印金刚石工具的研究进展. 金刚石与磨料磨具工程, 2021, 41(3): 40

    Zhang Y H, Huang J L, Song Y Y, et al. Research progress of 3D printing diamond tools. Diamond Abras Eng, 2021, 41(3): 40

    [25]

    Grossin D, Monton A, Navarrete-Segado P, et al. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering / melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites. Open Ceram, 2021, 5: 100073 DOI: 10.1016/j.oceram.2021.100073

    [26] 樊恩想, 刘小欣, 吴欢欢. 激光选区熔化增材制造技术的发展. 机械制造, 2021, 59(8): 45

    Fan E X, Liu X X, Wu H H. Development of laser selective melting additive manufacturing technology. Machinery, 2021, 59(8): 45

    [27] 赵国伟. 大型FDM多喷头3D打印机设计与控制系统及工艺参数研究[学位论文]. 南昌: 南昌大学, 2021

    Zhao G W. Study on Design and Control System of Large-Scale Multi-Nozzle FDM-3D Printer with Process Parameters [Dissertation]. Nanchang: Nanchang University, 2021

    [28] 王联凤, 刘延辉, 朱小刚, 等. 选择性激光烧结PA6样品的力学性能研究. 应用激光, 2016, 36(2): 136

    Wang L F, Liu Y H, Zhu X G, et al. Investigation on the mechanical properties of PA6 by SLS. Appl Laser, 2016, 36(2): 136

    [29] 辛艳喜, 蔡高参, 胡彪, 等. 3D打印主要成形工艺及其应用进展. 精密成形工程, 2021, 13(6): 156

    Xin Y X, Cai G S, Hu B, et al. Recent development of main process types of 3D printing technology and application. J Netshape Form Eng, 2021, 13(6): 156

    [30] 史玉升, 闫春泽, 魏青松, 等. 选择性激光烧结3D打印用高分子复合材料. 中国科学: 信息科学, 2015, 45(2): 204 DOI: 10.1360/N112014-00222

    Shi Y S, Yan C Z, Wei Q S, et al. Polymer based composites for selective laser sintering 3D printing technology. Sci Sin Inf, 2015, 45(2): 204 DOI: 10.1360/N112014-00222

    [31] 王海巧. 快速成形技术的发展. 机械制造与自动化, 2009, 38(5): 1

    Wang H Q. Development of rapid prototyping technology. Mach Build Autom, 2009, 38(5): 1

    [32] 肖建军, 谢洋生. 选区激光熔化金属三维打印设备的风场仿真与优化. 装备机械, 2021(2): 34

    Xiao J J, Xie Y S. Wind field simulation and optimization of selective laser melting metal 3D printing equipment. Mag Equip Mach, 2021(2): 34

    [33] 张赛博, 赵俊淞, 李小海, 等. 金属3D打印技术的应用与发展前景. 装备制造技术, 2022(11): 207

    Zhang S B, Zhao J S, Li X H, et al. Application and development prospect of metal 3D printing technology. Equip Manuf Technol, 2022(11): 207

    [34]

    Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des, 2019, 183: 108137 DOI: 10.1016/j.matdes.2019.108137

    [35]

    Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review. Optik, 2020, 207: 163842 DOI: 10.1016/j.ijleo.2019.163842

    [36] 杨展, 谭松成, 杨凯华. 3D打印金属基金刚石复合材料的试验研究. 金刚石与磨料磨具工程, 2018, 38(1): 50

    Yang Z, Tan S C, Yang K H. Experimental research on metal-based diamond composites by 3D printing. Diamond Abras Eng, 2018, 38(1): 50

    [37] 苏振华, 刘刚, 代兵, 等. 选区激光熔化制备金刚石/铝复合材料的缺陷研究. 金刚石与磨料磨具工程, 2020, 40(3): 46

    Su Z H, Liu G, Dai B, et al. Study on defects of diamond/aluminum composites prepared by selective laser melting. Diamond Abras Eng, 2020, 40(3): 46

    [38]

    Gan J, Gao H, Wen S F, et al. Simulation, forming process and mechanical property of Cu−Sn−Ti/diamond composites fabricated by selective laser melting. Int J Refract Met Hard Mater, 2020, 87: 105144 DOI: 10.1016/j.ijrmhm.2019.105144

    [39] 张俊涛, 黄淼俊, 胡子健, 等. 选区激光熔化制备金刚石/TC4复合材料的成型工艺及性能分析. 机电信息, 2021(15): 46 DOI: 10.3969/j.issn.1671-0797.2021.15.019

    Zhang J T, Huang M J, Hu Z J, et al. Formation process and properties analysis of diamond /TC4 composites prepared by selective laser melting. Mech Elect Inf, 2021(15): 46 DOI: 10.3969/j.issn.1671-0797.2021.15.019

    [40] 张绍和, 苏舟, 刘磊磊, 等. SLS和FDMS制造超薄金刚石锯片对比研究. 金刚石与磨料磨具工程, 2021, 41(1): 38

    Zhang S H, Su Z, Liu L L, et al. Comparative study on ultra-thin diamond saw blades by SLS and FDMS. Diamond Abras Eng, 2021, 41(1): 38

    [41] 黄淼俊, 伍海东, 黄容基, 等. 陶瓷增材制造(3D打印)技术研究进展. 现代技术陶瓷, 2017, 38(4): 248

    Huang M J, Wu H D, Huang R J, et al. A review on ceramic additive manufacturing (3D printing). Adv Ceram, 2017, 38(4): 248

    [42]

    Beffort O, Khalid F A, Weber L, et al. Interface formation in infiltrated Al(Si)/diamond composites. Diamond Relat Mater, 2006, 15(9): 1250 DOI: 10.1016/j.diamond.2005.09.036

    [43] 邱燕飞. 金刚石磨粒三维可控排布树脂磨具的构造与制备[学位论文]. 厦门: 华侨大学, 2019

    Qiu Y F. Research on the Design and Fabrication of Resin Grinding Wheels with 3-Dimentional Controllable Diamond Abrasive Arrangement [Dissertation]. Xiamen: Huaqiao University, 2019

    [44]

    Huang Q Y, Guo L, Marinescu I D. Research on the properties of resin bond wheel cured by ultraviolet light. Procedia Manuf, 2016, 5: 259 DOI: 10.1016/j.promfg.2016.08.023

    [45] 金嘉琦, 宋君峰, 孙凤, 等. 立体光固化成型技术的节材研究. 机械工程师. 2015(8): 123

    Jin J Q, Song J F, Sun F, et al. Research on saving material method on STL printing technology. Mech Eng, 2015(8): 123

    [46] 夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望. 材料导报, 2022, 36(10): 134

    Xia X G, Duan G L. Advances and prospects of additive manufacturing technology of functionally graded material. Mater Rep, 2022, 36(10): 134

    [47]

    Lewis J A, Smay J E, Stuecker J, et al. Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc, 2006, 89(12): 3599 DOI: 10.1111/j.1551-2916.2006.01382.x

    [48]

    Franchin G, Scanferla P, Zeffiro L, et al. Direct ink writing of geopolymeric inks. J Eur Ceram Soc, 2017, 37(6): 2481 DOI: 10.1016/j.jeurceramsoc.2017.01.030

    [49] 孙月花, 彭超群, 王小锋, 等. 直写成型技术: 一种新型微纳尺度三维结构的制备方法. 中国有色金属学报. 2015, 25(6): 1525

    Sun Y H, Peng C Q, Wang X F, et al. Direct ink writing: A novel avenue for engineering micro-/nanoscale 3D structures. Chin J Nonferrous Met, 2015, 25(6): 1525

    [50] 李勇, 孙晓松, 张国涛, 等. 基于热敏溶胶-凝胶过渡油墨的新型喷墨直印技术. 纺织学报, 2022, 92: 23

    Li Y, Sun X S, Zhang G T, et al. Novel inkjet direct printing technology based on thermosensitive sol–gel transition inks. J Text Res, 2022, 92: 23

    [51] 陈作王, 朱小芳, 冒浴沂. 高效液相色谱法测定3D打印用塑料线材热熔时挥发的醛酮类化合物. 理化检验(化学分册), 2021, 57(4): 296

    Chen Z W, Zhu X F, Mao Y Y. Determination of aldehydes and ketones volatilized from hot melt of plastic wire by high performance liquid chromatography. Phys Test Chem Anal B, 2021, 57(4): 296

    [52] 周振豪, 姜勇刚, 冯军宗, 等. 直写成型制备多孔陶瓷技术研究进展. 材料导报, 2023, 37(4): 77

    Zhou Z H, Jiang Y G, Feng J Z, et al. Direct ink writing of porous ceramics: a review. Mater Rep, 2023, 37(4): 77

    [53] 陆静, 王艳辉, 黄景銮. 一种蜂窝状金刚石工具的浆料直写成型方法: 中国专利, 112692956. 2022-07-01

    Lu J, Wang Y H, Huang J L. The Invention Relates to a Slurry Direct Writing Forming Method of a Honeycomb Diamond Tool: China Patent, 112692956. 2022-07-01

    [54] 吴国庆. 3D打印成型工艺及材料. 北京: 高等教育出版社, 2018

    Wu G Q. 3D Printing Process and Materials. Beijing: Higher Education Press, 2018

    [55] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展. 复合材料学报, 2021, 38(5): 1371

    Feng D, Wang B, Liu Q, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition technology. J Compos Mater, 2021, 38(5): 1371

    [56]

    He T, Zhang S H, Kong X W, et al. Influence of diamond parameters on microstructure and properties of copper-based diamond composites manufactured by fused deposition modeling and sintering (FDMS). J Alloys Compd, 2023, 931: 167492 DOI: 10.1016/j.jallcom.2022.167492

    [57]

    Su Z, Zhang S H, Liu L L, et al. Microstructure and performance characterization of Co-based diamond composites fabricated via fused deposition molding and sintering. J Alloys Compd, 2021, 871: 159569 DOI: 10.1016/j.jallcom.2021.159569

    [58]

    Tian C C, Li X K, Zhang S B, et al. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting (SLM). Mater Des, 2018, 156: 52 DOI: 10.1016/j.matdes.2018.06.029

    [59] 陈家泓, 张凤林, 许琼生, 等. 选区激光烧结3D打印树脂结合剂金刚石砂轮初探. 超硬材料工程, 2018, 30(4): 1

    Chen J H, Zhang F L, Xu Q S, et al. Research on fabrication of resin bonded diamond grinding wheel using selective laser sintering technology. Superhard Mater Eng, 2018, 30(4): 1

    [60]

    Du Z J, Zhang F L, Xu Q S, et al. Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes. Ceram Int, 2019, 45(16): 20873 DOI: 10.1016/j.ceramint.2019.07.076

    [61]

    Lin T, Liu S W, Ji Z H, et al. Vitrified bond diamond grinding wheel prepared by gel-casting with 3D printing molds. Diamond Relat Mater, 2020, 108: 107917 DOI: 10.1016/j.diamond.2020.107917

    [62] 胡滔. 石油钻头技术的现状研究及发展趋势. 中国石油和化工标准与质量, 2021, 41(20): 178

    Hu T. Research status and development trend of petroleum drill bit technology. China Pet Chem Stand Qual, 2021, 41(20): 178

    [63] 贾卫权. 地质钻探中金刚石钻头的科学选择与合理使用. 中小企业管理与科技(上旬刊), 2017(12): 168

    Jia W Q. Scientific selection and rational use of diamond bit in geological drilling. Manage Technol SME, 2017(12): 168

    [64] 余善平. 庐枞LZSD-1孔科学钻孔钻头选择与使用. 安徽地质, 2016, 26(1): 36

    Yu S P. Choice and use of drill bit for scientific drilling hole LZSD-1 in the LU-ZONG area. Geol Anhui, 2016, 26(1): 36

    [65] 韦文杰, 张绍和. 栅格胎体孕镶金刚石钻头的破岩机理分析. 煤田地质与勘探, 2017, 45(5): 180

    Wei W J, Zhang S H. Analysis on fragmentation mechanism of impregnated diamond bit with grids matrix. Coal Geol Explor, 2017, 45(5): 180

    [66]

    Wu J, Zhang S, Qu F, et al. Matrix material for a new 3D-printed diamond-impregnated bit with grid-shaped matrix. Int J Refract Met Hard Mater, 2019, 82: 199 DOI: 10.1016/j.ijrmhm.2019.04.017

    [67] 陈亚洲, 刘晓刚, 叶崇化, 等. 金刚石锯切优化技术. 石材, 2016(9): 10

    Chen Y Z, Liu X G, Ye C H, et al. Diamond sawing optimization Technology. Stone, 2016(9): 10

    [68] 李天敏, 赵民. 金刚石圆锯片生产工艺过程. 石材, 2017(7): 16

    Li T M, Zhao M. Production process of diamond circular saw blade. Stone, 2017(7): 16

    [69] 梁志敏, 胡虎安, 王立伟, 等. 一种增材制造均布金刚石刀头的制备方法及筛排装置: 中国专利, 110102765, 2021-06-22

    Liang Z M, Hu H A, Wang L W, et al. Preparation Method of Additive Manufacturing Uniform-Distribution Diamond Cutter Head and Screening and Discharging Device: China Patent, 110102765. 2021-06-22

    [70] 曹瑞香, 孙岚. TiC晶须增强增韧的金刚石锯片的研制. 粘接, 2021, 48(10): 46

    Cao R X, Sun L. Development of TiC whisker reinforced and toughened diamond saw blade. Adhesion, 2021, 48(10): 46

图(15)  /  表(5)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  61
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 网络出版日期:  2023-05-04
  • 刊出日期:  2024-12-27

目录

    /

    返回文章
    返回