高级检索

退火温度对La2O3强化钼铼合金的影响

任雪婷, 王广达, 周武平, 熊宁

任雪婷, 王广达, 周武平, 熊宁. 退火温度对La2O3强化钼铼合金的影响[J]. 粉末冶金技术, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007
引用本文: 任雪婷, 王广达, 周武平, 熊宁. 退火温度对La2O3强化钼铼合金的影响[J]. 粉末冶金技术, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007
REN Xueting, WANG Guangda, ZHOU Wuping, XIONG Ning. Effect of annealing temperature on La2O3 strengthened Mo–Re alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007
Citation: REN Xueting, WANG Guangda, ZHOU Wuping, XIONG Ning. Effect of annealing temperature on La2O3 strengthened Mo–Re alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007

退火温度对La2O3强化钼铼合金的影响

基金项目: 国家重点研发计划专项资助项目(2022YFB3705400)
详细信息
    通讯作者:

    周武平: E-mail: zhouwuping@atmcn.com

  • 中图分类号: TF123;TG142.71

Effect of annealing temperature on La2O3 strengthened Mo–Re alloys

More Information
  • 摘要:

    钼铼合金属于高熔点、低膨胀系数的固溶强化合金,添加稀土氧化物能够细化钼铼合金晶粒,起到弥散强化的作用。采用粉末冶金技术和交叉轧制法制备钼铼(Mo–Re)合金和钼铼镧(Mo–Re–La2O3)合金板材,并对两种合金板材进行不同温度的退火热处理。通过金相显微镜和电子扫描显微镜观察了钼铼合金板材和钼铼镧合金板材在不同退火温度下合金显微组织和室温拉伸断口形貌,比较了两种合金板材的维氏硬度和室温拉伸性能。结果表明,钼铼合金的再结晶温度为1200 ℃左右,而钼铼镧合金的再结晶温度为1400 ℃,La2O3的加入使再结晶温度提升200 ℃左右;随着退火温度提高,钼铼合金和钼铼镧合金的硬度和抗拉强度显著降低,而钼铼镧合金的延伸率得以升高,最高可达27.5%。

    Abstract:

    Molybdenum rhenium alloys are the solid solution strengthening alloys with high melting point and low expansion coefficient, and the addition of rare earth oxides can refine the grains and play a role in dispersion strengthening. Molybdenum−rhenium (Mo–Re) and molybdenum−rhenium−lanthanum (Mo–Re–La2O3) alloy plates were prepared by powder metallurgy and cross rolling method in this paper, and were annealed at different temperatures. The microstructure and room temperature tensile fracture morphology of the Mo–Re alloys and Mo–Re–La2O3 alloys annealed at different temperatures were observed by metallographic microscope and scanning electron microscope. The Vickers hardness and room temperature tensile properties of the two alloy plates were compared. The results show that the recrystallization temperature of Mo–Re alloys is about 1200 ℃, while that of the Mo–Re–La2O3 alloys is 1400 ℃. The addition of La2O3 increases the recrystallization temperature by about 200 ℃. With the increase of annealing temperature, the hardness and tensile strength of the Mo–Re alloys and Mo–Re–La2O3 alloys decrease significantly, while the elongation of Mo–Re–La2O3 alloys increases, up to 27.5%.

  • 图  1   室温拉伸试样示意图

    Figure  1.   Diagram of the tensile specimens at room temperature

    图  2   烧结态钼合金的金相组织:(a)Mo–Re;(b)Mo–Re–La2O3

    Figure  2.   Metallographic structure of the sintered molybdenum alloys: (a) Mo–Re; (b) Mo–Re–La2O3

    图  3   轧制态及不同温度退火后Mo–Re合金金相组织:(a)轧制态;(b)1100 ℃退火;(c)1200 ℃退火;(d)1300 ℃退火

    Figure  3.   Microstructure of the Mo–Re alloys in rolled state and after annealing at different temperatures: (a) rolled state; (b) annealing at 1100 ℃; (c) annealing at 1200 ℃; (d) annealing at 1300

    图  4   轧制态及不同温度退火后Mo–Re–La2O3合金金相组织:(a)轧制态;(b)1300 ℃退火;(c)1400 ℃退火;(d)1500 ℃退火

    Figure  4.   Microstructure of the Mo–Re–La2O3 alloys in rolled state and after annealing at different temperatures: (a) rolled state; (b) annealing at 1300 ℃; (c) annealing at 1400 ℃; (d) annealing at 1500

    图  5   轧制态及不同温度退火后Mo–Re合金的电子背散射衍射反极图:(a)轧制态;(b)1100 ℃退火;(c)1200 ℃退火;(d)1300 ℃退火

    Figure  5.   IPF color maps of the Mo–Re alloys in rolled state and after annealing at different temperatures: (a) rolled state; (b) annealing at 1100 ℃; (c) annealing at 1200 ℃; (d) annealing at 1300

    图  6   轧制态及不同温度退火后Mo–Re–La2O3合金的电子背散射衍射反极图:(a)轧制态;(b)1300 ℃退火;(c)1400 ℃退火;(d)1500 ℃退火

    Figure  6.   IPF color maps of the Mo–Re–La2O3 alloys in rolled state and after annealing at different temperatures: (a) rolled state; (b) annealing at 1300 ℃; (c) annealing at 1400 ℃; (d) annealing at 1500

    图  7   轧制态及不同温度退火后钼合金的维氏硬度:(a)Mo–Re合金;(b)Mo–Re–La2O3合金

    Figure  7.   Vickers hardness of the molybdenum alloys in rolled state and after annealing at different temperatures: (a) Mo–Re alloys; (b) Mo–Re–La2O3 alloys

    图  8   轧制态及不同温度退火后Mo–Re合金的抗拉强度与延伸率

    Figure  8.   Tensile strength and elongation of the Mo–Re alloys in rolled state and after annealing at different temperatures

    图  9   轧制态及不同温度退火后Mo–Re–La2O3合金的抗拉强度与延伸率

    Figure  9.   Tensile strength and elongation of the Mo–Re–La2O3 alloys in rolled state and after annealing at different temperatures

    图  10   轧制态及不同温度退火后Mo–Re合金断口形貌:(a)轧制态;(b)1100 ℃退火;(c)1200 ℃退火;(d)1300 ℃退火

    Figure  10.   Fracture morphology of the Mo–Re alloys in rolled state and after annealing at different temperatures: (a) rolled state; (b) annealing at 1100 ℃; (c) annealing at 1200 ℃; (d) annealing at 1300

    图  11   轧制态及不同温度退火后Mo–Re–La2O3合金的断口形貌:(a)轧制态;(b)1300 ℃退火;(c)1400 ℃退火;(d)1500 ℃退火

    Figure  11.   Fracture morphology of the Mo–Re–La2O3 alloys in rolled state and after annealing at different temperatures: (a) rolled state; (b) annealing at 1300 ℃; (c) annealing at 1400 ℃; (d) annealing at 1500

    表  1   热处理前钼合金的性能

    Table  1   Physical properties of the molybdenum alloys before heat treatment

    试样 La2O3质量分数 / % 晶粒尺寸 / μm 密度 / (g·cm−3) 维氏硬度,HV 轧制变形量 / %
    Mo–Re 0 78.8 10.85 163.02 82
    Mo–Re–La2O3 0.78 25.2 10.89 191.14 82
    下载: 导出CSV
  • [1] 杨慧玲. 钼在[BMP]Tf2N离子液体中的电沉积及其机理相关研究[学位论文]. 杭州: 浙江大学, 2017

    Yang H L. Research on the Electrodeposition of Molybdenum in [BMP]Tf2N Ionic Liquid and its Mechanism [Dissertation]. Hangzhou: Zhejiang University, 2017

    [2] 曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料研究进展. 粉末冶金技术, 2023, 41(4): 307

    Zeng Y, Sun Y J, An G, et al. Research progress of Mo−Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307

    [3] 陈闯. 自生Al2O3增强钼基复合材料的成形机理研究[学位论文]. 洛阳: 河南科技大学, 2013

    Chen C. Study on Forming Mechanism of Molybdenum Based Composites Reinforced by In-situ Al2O3 Particles [Dissertation]. Luoyang: Henan University of Science and Technology, 2013

    [4] 李敏. 钼镧合金厚板材退火工艺对其热成形性影响研究. 中国钨业, 2018, 33(3): 41 DOI: 10.3969/j.issn.1009-0622.2018.03.008

    Li M. Effects of annealing process on thermal deep drawing of Mo‒La plate. China Tungsten Ind, 2018, 33(3): 41 DOI: 10.3969/j.issn.1009-0622.2018.03.008

    [5] 付霄荧, 周增林, 李艳, 等. 退火温度对交叉轧制钼箔显微组织、织构及性能的影响. 稀有金属, 2020, 46(2): 137

    Fu X Y, Zhou Z L, Li Y, et al. Microstructure, texture and performance of cross-rolled molybdenum foil with different annealing temperatures. Chin J Rare Met, 2020, 46(2): 137

    [6] 王林, 孙军, 孙院军, 等. 不同退火温度对Mo‒La2O3板材微观组织及力学性能的影响. 中国钼业, 2011, 35(5): 37 DOI: 10.3969/j.issn.1006-2602.2011.05.012

    Wang L, Sun J, Sun Y J, et al. Influence of annealing temperatures on microstructure and mechanical properties of Mo‒La2O3. China Molybd Ind, 2011, 35(5): 37 DOI: 10.3969/j.issn.1006-2602.2011.05.012

    [7] 王广达, 熊宁, 唐亮亮, 等. 退火处理对钼铼合金箔材性能的影响. 中国钼业, 2019, 43(2): 41

    Wang G D, Xiong N, Tang L L, et al. Effect of heat treatment on the properties of Mo−Re alloy foils. China Molybd Ind, 2019, 43(2): 41

    [8] 王承阳, 董帝, 滕宇阔, 等. 退火工艺对MHC钼合金板材组织和力学性能的影响. 金属热处理, 2018, 43(7): 180

    Wang C Y, Dong D, Teng Y K, et al. Effect of annealing on microstructure and mechanical properties of MHC molybdenum alloy sheet. Heat Treat Met, 2018, 43(7): 180

    [9] 黄志民. 退火工艺对WTi10靶材组织及纯度的影响. 粉末冶金技术, 2021, 39(3): 274

    Huang Z M. Influence of annealing process on microstructure and purity of WTi10 target. Powder Metall Technol, 2021, 39(3): 274

    [10] 李烨, 刘世锋, 王建忠, 等. 退火态Ti−6Al−3Nb−2Zr−1Mo钛合金的组织和力学性能. 粉末冶金技术, 2021, 39(4): 326

    Li Y, Liu S F, Wang J Z, et al. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys. Powder Metall Technol, 2021, 39(4): 326

    [11] 王灿. MnS夹杂物对基体显微组织影响和损伤机理研究[学位论文]. 秦皇岛: 燕山大学, 2020

    Wang C. Investigation of MnS Inclusions on the Microstructure and Damage Mechanism of Matrix [Dissertation]. Qinhuangdao: Yanshan University, 2020

    [12] 邓莉萍, 鲁世强, 林彦, 等. 高温退火对Laves相NbCr2合金性能的影响. 粉末冶金技术, 2014, 32(1): 48 DOI: 10.3969/j.issn.1001-3784.2014.01.009

    Deng L P, Lu S Q, Lin Y, et al. Effect of high-temperature annealing on properties of NbCr2 alloy. Powder Metall Technol, 2014, 32(1): 48 DOI: 10.3969/j.issn.1001-3784.2014.01.009

    [13] 王林, 孙军, 刘刚, 等. La2O3含量及退火温度对钼合金晶粒尺寸及显微硬度的影响. 中国钼业, 2014, 38(2): 36

    Wang L, Sun J, Liu G, et al. Influence of the content of La2O3 and annealing temperature on grain size and microhardness of Mo alloys. China Molybd Ind, 2014, 38(2): 36

    [14] 刘智恩. 材料科学基础. 2版. 西安: 西北工业大学出版社, 2003

    Liu Z N. Material Science. 2nd Ed. Xi'an: Northwest Industrial University Press, 2003

    [15] 邱玺, 高士鑫, 李权, 等. 热管反应堆用钼铼合金的研究进展. 材料导报, 2023, 37(2): 97 DOI: 10.11896/cldb.21020011

    Qiu X, Gao S X, Li Q, et al. Research progress of molybdenum-rhenium alloys used in heat pipe reactor. Mater Rep, 2023, 37(2): 97 DOI: 10.11896/cldb.21020011

    [16] 刘仁智, 安耿, 杨秦莉, 等. 钼‒铼‒镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429

    Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo‒Re‒La alloy. Powder Metall Technol, 2018, 36(6): 429

    [17] 黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    Huang H T, Wang W J, Gu W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. Atom Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    [18]

    Mueller A J, Bianco R, Buckman R W, et al. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys. Int J Refract Met Hard Mater, 2000, 18(4-5): 205 DOI: 10.1016/S0263-4368(00)00028-7

    [19]

    Song W L, Xu L J, Li N, et al. Effect of zirconia on low cycle fatigue and energy absorption of molybdenum alloy. J Alloys Compd, 2021, 867: 159118 DOI: 10.1016/j.jallcom.2021.159118

    [20] 姬耀鑫, 吴壮志, 王德志. 单向轧制纯钼板退火织构及其各向异性的研究. 中国钼业, 2020, 44(1): 37

    Ji Y X, Wu Z Z, Wang D Z. Annealing texture and anisotropy of pure molybdenum plate sobtained by unidirectional rolling. China Molybd Ind, 2020, 44(1): 37

    [21] 刘杰, 李琳玲, 陈利. 退火工艺对钼板拉深性能影响规律研究. 金属加工(热加工), 2018(3): 51

    Liu J, Li L L, Chen L. Study on the influence of annealing process on the deep drawing performance of molybdenum plate. MW Met Form, 2018(3): 51

    [22] 许忠国, 李来平, 汤慧萍. 退火温度对超细钼丝性能的影响. 中国材料进展, 2008, 27(2): 25

    Xu Z G, Li L P, Tang H P. Effect of annealing temperature on mechanical properties of superfine molybdenum wires. Mater China, 2008, 27(2): 25

    [23] 杨益航, 王启东, 李保强, 等. WTi10合金的高温高压制备及相特征. 稀有金属材料与工程, 2021, 50(2): 664

    Yang Y H, Wang Q D, Li B Q, et al. High temperature and high pressure preparation and phase characterization of WTi10 alloy. Rare Met Mater Eng, 2021, 50(2): 664

  • 期刊类型引用(6)

    1. Lebiao Yang,Xiaona Ren,Chao Cai,Pengju Xue,M.Irfan Hussain,Yusheng Shi,Changchun Ge. Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing. International Journal of Minerals, Metallurgy and Materials. 2023(01): 122-130 . 必应学术
    2. 王娜,朱琦,周莎,席莎,武洲,吴吉娜,张晓,刘仁智,崔玉青,王锦. 热等静压烧结温度对Mo–Na合金性能影响. 粉末冶金技术. 2022(04): 356-361 . 本站查看
    3. 车洪艳,王铁军,秦巍,董浩,张龙戈,张岩. 热等静压技术在金属材料加工领域的应用及发展趋势. 粉末冶金工业. 2022(04): 1-7 . 百度学术
    4. 林小辉,李来平,李斌,梁静,薛建嵘,张小明. 热等静压在稀有难熔金属产品制备中的应用. 粉末冶金工业. 2017(03): 63-67 . 百度学术
    5. 鲁宁宁,许磊,历长云,王有超,米国发. 石墨烯增强铝基复合材料制备技术研究进展. 粉末冶金技术. 2017(04): 310-318 . 本站查看
    6. 王冰,纪玮,邓太庆,赵丰,林岩松. TA15粉末冶金产品热等静压成形工艺过程的数值模拟. 宇航材料工艺. 2017(04): 19-22 . 百度学术

    其他类型引用(3)

图(11)  /  表(1)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  37
  • PDF下载量:  39
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-07-27
  • 录用日期:  2023-07-27
  • 网络出版日期:  2023-07-27
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回