高级检索

烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响

高姣姣, 平萍, 胡士恒, 宋金鹏

高姣姣, 平萍, 胡士恒, 宋金鹏. 烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响[J]. 粉末冶金技术, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
引用本文: 高姣姣, 平萍, 胡士恒, 宋金鹏. 烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响[J]. 粉末冶金技术, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
Citation: GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006

烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响

基金项目: 国家自然科学基金资助项目(52205492);山西省基础研究计划资助项目(202103021223121)
详细信息
    通讯作者:

    高姣姣: E-mail: gaojiaojiao@tyut.edu.cn

  • 中图分类号: TF12;TB332

Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics

More Information
  • 摘要:

    以Ti(C,N)为基体相,HfN和WC为不同层的增强相,金属Ni和Mo为粘结相,采用交替铺层法制备素坯,并利用真空热压烧结技术制备Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷,研究了烧结温度对层状陶瓷微观组织和力学性能的影响。结果表明:随着烧结温度的升高,材料中的晶粒逐渐长大,在烧结温度为1350 ℃和1400 ℃时,材料的晶粒较小但分布不均匀,且存在较多的微缺陷;在烧结温度为1450 ℃和1500 ℃时,材料中的晶粒相对均匀(粒径~1 μm),微缺陷较少;在烧结温度达到1550 ℃时,材料中出现了大量粗大晶粒(粒径~2 μm)。随着烧结温度的升高,层状陶瓷的抗弯强度、维氏硬度和断裂韧度均先增大后减小。在1450 ℃下所制备的Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷具有较好的综合力学性能,其抗弯强度、维氏硬度和断裂韧度分别为(1263.6±17.1)MPa、(18.5±0.3)GPa和(8.2±0.1)MPa·m1/2。此外,Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷在断裂时表现为穿晶与沿晶并存的断裂模式。

    Abstract:

    Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics were prepared by alternately making layer method and vacuum hot pressing sintering technology, using Ti(C,N) as the matrix phase, HfN and WC as the reinforced phases for the different layers, and metal Ni and Mo as the binder phases. The effects of sintering temperature on the microstructure and mechanical properties of the laminated ceramics were investigated. The results show that with the increase of sintering temperature, the grains grow up gradually. When the sintering temperature is 1350 ℃ and 1400 ℃, the grains are small but unevenly distributed with many micro-defects. At the sintering temperature of 1450 ℃ and 1500 ℃, the grains are uniform (~1 μm) and there are fewer micro-defects. However, when the sintering temperature reaches 1550 ℃, a large number of coarse grains (~2 μm) appear. Moreover, with the increase of the sintering temperature, the flexural strength, Vickers hardness, and fracture toughness of the laminated ceramics increase first and then decrease. The laminated ceramic sintered at 1450 ℃ shows the better comprehensive mechanical properties, the flexural strength, Vickers hardness, and fracture toughness are (1263.6±17.1) MPa, (18.5±0.3) GPa, and (8.2±0.1) MPa·m1/2, respectively. In addition, the Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics exhibit the co-existence model of intergranular fracture and transgranular fracture.

  • 图  1   层状陶瓷硬度及断裂韧度测试方式

    Figure  1.   Indentation diagram for hardness and fracture toughness testing of the laminated ceramic

    图  2   不同烧结温度下所制备的Ti(C,N)基层状陶瓷X射线衍射图谱:(a)TH层;(b)TW层

    Figure  2.   XRD patterns of the Ti(C,N)-based laminated ceramics sintered at different temperatures: (a) TH layer; (b) TW layer

    图  3   Ti(C,N)基层状陶瓷层间结合处的抛光面形貌及能谱分析

    Figure  3.   Polished surface images and EDS of the Ti(C,N)-based laminated ceramics

    图  4   Ti(C,N)基层状陶瓷断口形貌:(a)1350 ℃;(b)1400 ℃;(c)1450 ℃;(d)1500 ℃;(e)1550 ℃

    Figure  4.   Fracture morphologies of the Ti(C,N)-based laminated ceramic sintered at different sintering temperatures: (a) 1350 ℃; (b) 1400 ℃; (c) 1450 ℃; (d) 1500 ℃; (e) 1550 ℃

    图  5   Ti(C,N)基层状陶瓷的力学性能:(a)抗弯强度;(b)维氏硬度;(c)断裂韧度

    Figure  5.   Mechanical properties of the Ti(C,N)-based laminated ceramics: (a) flexural strength; (b) Vickers hardness; (c) fracture toughness

    表  1   原始粉末参数及生产商

    Table  1   Parameters and manufacturer of the original powders

    原始粉末纯度 / %平均粒度 / μm生产商
    TiC0.7N0.399.91.0上海水田材料科技
    有限公司
    HfN99.90.8
    WC99.90.1
    Mo99.81.0
    Ni99.81.0
    下载: 导出CSV

    表  2   TiCN基层状金属陶瓷各层组分及含量(质量分数)

    Table  2   Component and composition of the Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics %

    试样Ti(C,N)HfNWCNiMo
    Ti(C,N)-HfN (TH)7220044
    Ti(C,N)-WC (TW)7202044
    下载: 导出CSV

    表  3   原料物理参数[1819]

    Table  3   Physical parameters of the raw materials

    材料Ti(C,N)HfNWCNiMo
    热膨胀系数 / (10−6K−1)8.616.007.3013.205.30
    下载: 导出CSV
  • [1]

    Duan P Q, Chen W L, Liu A J, et al. Study on mechanical properties and crack resistance of composite Ti(C, N) based cermets. J Phys Conf Ser, 2021, 2021: 012001 DOI: 10.1088/1742-6596/2021/1/012001

    [2] 刘嘉威, 古思勇, 陈莹, 等 水解沉淀-碳热还原氮化法制备碳氮化钛粉末. 粉末冶金技术, 2021, 39(1): 89

    Liu J W, Gu S Y, Chen Y, et al. Synthesis of Ti(C, N) powders by hydrolysis precipitation-carbothemal reduction and nitridation method. Powder Metall Technol, 2021, 39(1): 89

    [3]

    Pang J, Liu Y, Ye J W, et al. Microwave sintering of TiCN-based cermets prepared from electroless Co-coated (Ti, W, Mo, V)CN powders. Rare Met, 2022, 41: 4209 DOI: 10.1007/s12598-016-0866-5

    [4] 李朝, 李楠, 柳学全, 等. WC质量分数对Ti(C0.7N0.3)基金属陶瓷组织和性能的影响. 粉末冶金技术, 2018, 36(2): 100

    Li C, Li N, Liu X Q, et al. Effect of WC mass fraction on the microstructure and properties of Ti(C0.7N0.3)-based cermets. Powder Metall Technol, 2018, 36(2): 100

    [5] 宋金鹏, 于成功, 高姣姣, 等. WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(4): 243

    Song J P, Yu C G, Gao J J, et al. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials. Powder Metall Technol, 2020, 38(4): 243

    [6]

    Wang S W, Zheng Y, Zhang G T, et al. Effect of NbC addition on the microstructure, mechanical properties and thermal shock resistance of Ti(C, N)-based cermets. Mater Res Express, 2019, 6(5): 056557 DOI: 10.1088/2053-1591/ab07e9

    [7]

    Liu C, Lin N, He Y H. Influence of Mo2C and TaC additions on the microstructure and mechanical properties of Ti(C, N)-based cermets. Ceram Int, 2016, 42(2B): 3569

    [8]

    Zhang G T, Zheng Y, Zhang J J, et al. Effect of VC/Cr3C2 additions on the microstructure, interface structure and mechanical properties of Ti(C, N)-based cermets prepared by in situ carbothermal reduction of nano TiO2. Ceram Int, 2020, 46(7): 9698 DOI: 10.1016/j.ceramint.2019.12.237

    [9]

    Shankar E, Balasivanandha P S, Padmanabhan K A. Effect of nano-TiB2 addition on the microstructure, mechanical properties and machining performance of TiCN cermet. J Am Ceram Soc, 2018, 54: 565 DOI: 10.1007/s41779-018-0185-4

    [10] 刘懿漫, 邓小龙, 吴洁婷, 等. 烧结温度对Ti(C, N)刀具材料显微组织与性能的影响. 金属材料与冶金工程, 2022, 50(1): 12

    Liu Y M, Deng X L, Wu J T, et al. Effect of sintering temperature on microstructure and properties of Ti(C, N) tool materials. Met Mater Metall Eng, 2022, 50(1): 12

    [11] 鲍贤勇, 曾美琴, 鲁忠臣, 等. 烧结温度对Ti(C, N)基金属陶瓷组织及力学性能的影响. 材料热处理学报, 2017, 38(5): 61

    Bao X Y, Zeng M Q, Lu Z C, et al. Influence of sintering temperature on microstructure and mechanical properties of Ti(C, N)-based cermets. Trans Mater Heat Treat, 2017, 38(5): 61

    [12]

    Yun H, Zou B, Wang J. Effects of sintering temperature and nano Ti(C, N) on the microstructure and mechanical properties of Ti(C, N) cermets cutting tool materials with low Ni−Co. Mater Sci Eng A, 2017, 705: 98 DOI: 10.1016/j.msea.2017.08.033

    [13]

    Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics. Nature, 1990, 347: 455 DOI: 10.1038/347455a0

    [14]

    Gao J J, Song J P, Wang Y, et al. Microstructures and mechanical properties of functionally graded TiCN−TaC ceramics prepared by a novel layer processing strategy. Ceram Int, 2022, 48(12): 16990 DOI: 10.1016/j.ceramint.2022.02.254

    [15]

    Chen B S, Xiao G C, Yi M D, et al. Structural design and toughening mechanism of laminated graphene ceramic tool materials. Ceram Int, 2021, 47(22): 32264 DOI: 10.1016/j.ceramint.2021.08.121

    [16] 王卓, 高姣姣, 王瑶, 等. 层厚对TiC-HfN/TiC-HfC层状陶瓷微观组织及力学性能的影响. 热加工工艺, 2024(4): 58

    Wang Z, Gao J J, Wang Y, et al. Effect of layer thickness on microstructure and mechanical properties of TiC-HfN/TiC-HfC laminated ceramics. Hot Working Technol, 2024(4): 58

    [17]

    Song Y J, Yi M D, Zhang G Q, et al. Design and synthesis of a novel ceramic coating-like tool material. Ceram Int, 2021, 47(3): 4206 DOI: 10.1016/j.ceramint.2020.09.299

    [18] 高姣姣. 芯-壳与颗粒弥散共存型TiCN基陶瓷刀具及其切削性能研究[学位论文]. 太原: 太原理工大学, 2020

    Gao J J. Study on TiCN-Based Ceramic Tool with A Core-Rim and Particle Dispersion Microstructure and Tool Cutting Performance [Dissertation]. Taiyuan: Taiyuan University of Technology, 2020

    [19] 王爱军. Ti-Al-(Zr, Hf)-N耐磨涂层的热力学及力学性质的第一原理计算[学位论文]. 长沙: 中南大学, 2012

    Wang A J. First-Principles Calculations on the Thermodynamic and Mechanical Properties of Ti-Al-(Zr, Hf)-N Wear-Resistant Coating Systems [Dissertation]. Changsha: Central South University, 2012

    [20] 中国国家标准化管理委员会. GB/T6569-2006精细陶瓷弯曲强度试验方法. 北京: 中国标准出版社, 2006

    China State Bureau of Technological Supervision. GB/T6569-2006 Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method For Flexural Strength of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2006

    [21] 中国国家标准化管理委员会. 精细陶瓷室温硬度试验方法 GB/T16534-2009. 北京: 中国标准出版社, 2009

    China State Bureau of Technological Supervision. GB/T16534-2009 Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Hardness of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2009

    [22]

    Gao J J, Jiang L K, Song J P, et al. Effects of TiC Content on the microstructure and mechanical property of WC−TiC−TaC cemented carbides. J Inorg Mater, 2017, 32(8): 891 DOI: 10.15541/jim20160633

    [23]

    Zhao L B, Lin N, Han X Q, et al. Influence of microstructure evolution on mechanical properties, wear resistance and corrosion resistance of Ti(C, N)-based cermet tools with various WC additions. Met Mater Int, 2021, 27: 2773 DOI: 10.1007/s12540-020-00614-y

    [24]

    Song J P, Cao L, Gao J J, et al. Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J Alloys Compd, 2018, 753: 85

    [25] 宋金鹏. 硼化钛基复相陶瓷刀具及其失效机理研究[学位论文]. 济南: 山东大学, 2012

    Song J P. Study on Titanium Diboride Matrix Composite Ceramic Tool Materials and Tool Failure Mechanisms [Dissertation]. Jinan: Shandong University, 2012

    [26] 李金平, 孟松鹤, 韩杰才, 等. HfC1− xN x固溶体的价电子结构与性能. 稀有金属材料与工程, 2007(4): 569 DOI: 10.3321/j.issn:1002-185X.2007.04.002

    Li J P, Meng S H, Han J C, et al. Valence electron structure and properties of HfC1− xN x solid solutions. Rare Met Mater Eng, 2007(4): 569 DOI: 10.3321/j.issn:1002-185X.2007.04.002

    [27] 张广森, 季文彬, 戴士杰, 等. 微波烧结Ti(C, N)-WC-Al2O3/Ti(C, N)-WC叠层陶瓷的微观结构和力学性能. 硅酸盐学报, 2022, 50(12): 3212

    Zhang G S, Ji W B, Dai S J, et al. Microstructure and mechanical properties of microwave sintered Ti(C, N)-WC-Al2O3/Ti(C, N)-WC laminated ceramics. J Chin Ceram Soc, 2022, 50(12): 3212

图(5)  /  表(3)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  164
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2024-04-27

目录

    /

    返回文章
    返回