高级检索

新型镍基粉末高温合金的微观组织和力学性能

马向东, 程俊义, 龙安平, 杨金龙, 郭建政, 冯干江

马向东, 程俊义, 龙安平, 杨金龙, 郭建政, 冯干江. 新型镍基粉末高温合金的微观组织和力学性能[J]. 粉末冶金技术, 2023, 41(5): 434-441. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040016
引用本文: 马向东, 程俊义, 龙安平, 杨金龙, 郭建政, 冯干江. 新型镍基粉末高温合金的微观组织和力学性能[J]. 粉末冶金技术, 2023, 41(5): 434-441. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040016
MA Xiangdong, CHENG Junyi, LONG Anping, YANG Jinlong, GUO Jianzheng, FENG Ganjiang. Microstructure and mechanical properties of a novel nickel-based powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5): 434-441. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040016
Citation: MA Xiangdong, CHENG Junyi, LONG Anping, YANG Jinlong, GUO Jianzheng, FENG Ganjiang. Microstructure and mechanical properties of a novel nickel-based powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5): 434-441. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040016

新型镍基粉末高温合金的微观组织和力学性能

详细信息
    通讯作者:

    郭建政: E-mail: guo_jianzheng@qq.com

  • 中图分类号: TF123; TG146.15

Microstructure and mechanical properties of a novel nickel-based powder superalloy

More Information
  • 摘要:

    以新型镍基粉末高温合金FGH4113A(WZ-A3)为研究对象,采用“真空感应熔炼+氩气雾化制粉+热等静压+热挤压+等温锻造”工艺路线制备全尺寸涡轮盘,系统研究了锻造态FGH4113A合金在不同热处理状态下的微观组织和力学性能。结果表明:FGH4113A合金全尺寸涡轮盘宏观形貌良好,微观晶粒组织细小均匀;经亚固溶热处理后,平均晶粒度ASTM 11~13级,室温和550 ℃的屈服强度分别为1249和1185 MPa,抗拉强度分别为1674和1656 MPa,断后伸长率分别为23.5%和19.5%,在温度700 ℃,应变范围0~0.8%,加载频率0.33 Hz条件下的疲劳寿命均值为35000周次;经过固溶热处理后,平均晶粒度ASTM 6~8级,700和800 ℃的屈服强度分别为1063和966 MPa,抗拉强度分别为1403和1112 MPa,断后伸长率分别为17.5%和12.0%,在温度800 ℃,应力330 MPa,蠕变伸长量0.2%条件下的蠕变寿命均值为384 h,在温度700 ℃,应力强度因子范围30 MPa·m0.5条件下的裂纹扩展速率小于5×10−4 mm·cycle−1

    Abstract:

    A novel nickel-based powder metallurgy superalloy FGH4113A (WZ-A3) was used to manufacture the full-size turbine disks by the process route of “vacuum induction melting + argon atomization + hot isostatic pressing + hot extrusion + isothermal forging”. The microstructure and mechanical properties of the forged FGH4113A alloys under the different heat treatment conditions were systematically studied. The results show that, the full-size turbine disks prepared by FGH4113A alloy have the good macro morphology and homogeneous grain structure. After the subsolvus heat treatment, the average grain size is ASTM 11~13, the yield strength at room temperature and 550 ℃ are 1249 and 1185 MPa, the tensile strength are 1674 and 1656 MPa, and the elongation after fracture are 23.5% and 19.5%, respectively. The mean fatigue life under the conditions of temperature 700 ℃, strain range 0~0.8% and loading frequency 0.33 Hz is 35000 cycles. After the supersolvus heat treatment, the average grain size is ASTM 6~8, the yield strength at 700 ℃ and 800 ℃ are 1063 and 966 MPa, the tensile strength are 1403 and 1112 MPa, and the elongation after fracture are 17.5% and 12.0%, respectively. The mean creep life under the conditions of temperature 800 ℃, stress 330 MPa and creep elongation 0.2% is 384 h. The crack propagation rate under the conditions of temperature 700 ℃ and stress intensity factor range 30 MPa·m0.5 is less than 5×10−4 mm·cycle−1.

  • 烧结是将粉末或粉末压坯加热到低于其基本成分熔点温度,并在适当的气氛或真空条件下,以一定的方法和速度冷却到室温的过程。烧结使粉末颗粒之间发生粘结,压坯中颗粒相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,总体积收缩,密度增加,烧结体的强度增加,最后成为具有某种显微结构的致密多晶烧结体,最终获得所需力学性能的制品或材料。烧结是粉末冶金工艺中的一个重要环节,对最终产品质量有着决定性影响。烧结产生的缺陷及问题难以通过后续工艺调节或弥补,所以深入细致地对烧结行为进行研究探索是十分必要的[13]

    钼(Mo)是元素周期表中VIB族元素,原子序数42,原子量95.94。高熔点与高沸点是Mo的显著特点之一,其熔点为2620 ℃,仅次于C、W、Re、Ta和Os。由于Mo的熔点高,属难熔金属,Mo及Mo合金主要采用粉末冶金方法制备。首先获得高纯度Mo粉,再加入所需合金元素粉末,经油压机模压或冷等静压成形,最终经低于熔点的温度烧结成Mo合金制品。在生产实践中,科研人员对原料Mo粉、烧结后的Mo产品性能研究较多,对烧结过程,仅限于记录烧结温度、气氛、升温保温时间等工艺参数,对Mo合金本身在烧结过程中的变化研究较少。本文采用原位测量法,对比研究了放电等离子烧结与真空热压烧结法制备Mo–30W合金的烧结行为,更加准确地掌握Mo合金的烧结收缩和致密化规律。

    实验采用商用Mo粉和W粉,Mo粉费氏粒度为3.5 μm,W粉费氏粒度为3.0 μm。经过混料、压制成形,制备成ϕ20 mm×15 mm试样,分别使用放电等离子烧结(spark plasma sintering,SPS)设备和真空热压设备进行烧结实验,压力设定为35 MPa。采用排水法测试试样烧结密度,使用扫描电子显微镜(scanning electron microscope,SEM)观察试样断口形貌。图1为研究Mo合金烧结行为的实验系统,图中Mo合金样品的直径与模具阴模孔径相同,烧结过程中保持不变,上模冲、下模冲位置固定。烧结开始时微加压力于样品,行程反馈清零,上下模冲压力保持恒定。当系统开始加热时,样品轴向的变化通过上模冲实时表现出来,精度为微米级。

    图  1  放电等离子烧结系统示意图
    Figure  1.  Schematic diagram of the spark plasma sintering system

    实验主要目的是通过样品在不同温度下的轴向微小变化来反映Mo合金在烧结过程中的行为,这种直观反映Mo合金在高温烧结过程中的变化在行业中尚未发现相关研究信息。直观研究Mo合金烧结变化更加有助于深入掌握Mo合金的烧结规律,为Mo合金产品质量提升和行业进步产生积极的推动作用。

    根据石墨模具内径大小确定Mo–30W合金样品直径为20 mm、高度为15 mm。将试样装入模具,包好石墨毡保温,置于上下模冲的中心位置。调整上下模冲距离,使油缸压力稳定在0.3 MPa,将此位置作为试样零点。关闭炉门,抽真空。在真空度达到10 Pa以下时,调节电流,试样开始升温,记录试样轴向伸缩试验数据。

    图2为Mo–30W合金试样轴向伸缩和烧结温度随烧结时间的变化趋势。由图可知,温度曲线从室温开始上升,20 min后温度上升到1500 ℃,随后上升速度变缓,基本进入保温阶段。44 min时断电随炉自然降温,68 min时温度已接近室温。在起始3 min,Mo–30W合金试样轴向有微小收缩;随后随温度升高试样开始膨胀,在约13 min、1200 ℃膨胀达到最大值;之后开始收缩,且收缩速度较快;30 min、1600 ℃时试样收缩趋势变缓。44 min、1600 ℃时断电降温开始有明显较大的收缩,温度接近室温时,收缩基本停止。

    图  2  Mo–30W合金试样轴向伸缩和烧结温度随烧结时间的变化
    Figure  2.  Axial shrinkage and sintering temperature of the Mo–30W alloy specimens at different sintering times

    一般认为粉末冶金的烧结过程按温度–时间关系大致可划分黏结阶段、烧结颈长大及黏塑性流动阶段、闭孔隙球化和缩小阶段等三个界限不十分明显的阶段。黏结阶段属烧结初期,颗粒间原始接触点的原子由于温度升高、振幅加大、扩散加剧,使颗粒间的接触由点扩展到面。在这一阶段中颗粒内的晶粒不发生变化,颗粒外形也基本未变,整个坯体不发生明显的收缩,密度增加极微[47]

    Mo–30W合金属于无限固溶[8],在1200 ℃之前整个坯体不但没有发生收缩,反而有明显的膨胀现象,轴向膨胀量约为6%左右。这是由于原子温度升高,振幅加大颗粒体积膨胀,反映在宏观就是坯体有明显的膨胀现象。之前坯体在烧结过程中难以进行直接观测,所以不能深入了解坯体烧结时的变化规律。

    在1200~1600 ℃为烧结颈长大及黏塑性流动阶段,整个坯体收缩显著,而且收缩速度较快,与理论认识相符。主要是由于孔隙大量消失使坯体迅速收缩。在烧结颈长大及黏塑性流动阶段,原子向颗粒结合面大量迁移使烧结颈长大,颗粒间距缩小,形成连续的孔隙网络;同时由于晶粒长大,晶界越过孔隙移动,被晶界扫过的地方,孔隙大量消失。这一阶段坯体收缩、密度和强度显著增加。

    图2所示,整个坯体在1600 ℃保温一段时间后,收缩趋势变缓,收缩缓慢。相对于原始坯体,试样轴向收缩量约为6%左右,相对于膨胀最大值,试样轴向收缩量可达12%左右。这是因为在闭孔隙球化和缩小阶段,多数孔隙被完全分隔,闭孔数量大为增加,孔隙形状趋近于球形并不断缩小。在这个阶段,整个坯体收缩缓慢,主要是靠小孔的消失和孔隙的减少来实现。在降温开始后,整个坯体又产生一个较大的收缩。在降温阶段,整个坯体已被烧结呈现金属化,具有明显的金属特征所以随着温度的降低会产生较大的收缩。降温完成后,整个烧结体收缩率可达15%以上,这与中频烧结类似合金的收缩率基本相符。

    通过实验及分析可以确定,Mo–30W合金样品烧结规律为:在烧结升温开始之时,样品有微小收缩,随后随温度升高,试样开始膨胀;温度升到一定程度(1200 ℃)时,样品膨胀达到最大值,之后开始收缩,且收缩速度较快;随着温度继续升高,样品收缩趋势变缓;随着降温的开始,样品有明显较大的收缩,在温度接近室温时,收缩基本停止。

    图3为Mo–30W合金试样经真空热压烧结后,在烧结温度1600 ℃时,试样轴向伸缩率随时间的变化趋势。当烧结温度一定,随着保温时间的延长,Mo–30W合金样品的收缩率逐渐增大。在保温180 min时,收缩率达到最大值9%,此时样品的烧结完成,对应的相对密度也达最大值89.98%。

    图  3  1600 ℃真空热压烧结的Mo–30W合金试样收缩率随烧结时间的变化
    Figure  3.  Shrinkage of the Mo–30W alloys by vacuum hot pressing sintering at 1600 ℃ at different sintering times

    真空热压烧结的加热方式为电阻辐射加热,在整个烧结过程中,石墨模具、Mo–30W合金样品及真空热压烧结炉腔体的温度基本一致,石墨模具和Mo–30W合金样品一同收缩,所以上模冲的位移变化并不仅代表Mo–30W合金的位移变化。在放电等离子烧结过程中,烧结的热量主要作用在Mo–30W合金坯料上,整个烧结腔体的温度远低于Mo–30W合金坯料的温度,所以上模冲的位移变化能代表Mo–30W合金的位移变化。

    放电等离子烧结是一种比较特殊的烧结方式,样品的烧结质量对本文提出的Mo–30W合金样品烧结规律是一个重要条件,如果烧结质量不好,其烧结规律也不具备普遍意义,从而失去参考价值。样品的烧结密度是判断烧结质量的关键指标,以下是采用排水法测出的样品烧结后的密度,结果如表1所示。

    表  1  Mo–30W合金样品烧结密度
    Table  1.  Sintering density of the Mo–30W alloys
    烧结方法压坯密度 / (g·cm−3)压坯相对密度 / %烧结密度 / (g·cm−3)烧结相对密度 / %
    放电等离子烧结8.9169.7011.8993.00
    真空热压烧结8.9069.6211.5089.98
    下载: 导出CSV 
    | 显示表格

    表1中数据可以看出,Mo–30W合金样品经放电等离子烧结后密度有大幅提高,并且相对密度达到93%,可以判断基本达到烧结状态。Mo–30W合金样品原始高度为15 mm,烧结过程中样品直径受限,基本没有产生变化,降温后样品高度收缩3 mm,收缩率达到20%,相对于实测样品密度升高约25%,两者之间相互吻合。Mo–30W合金经真空热压烧结后,样品相对密度达到89.98%,样品原始高度为15 mm,烧结过程中样品直径受限,基本没有产生变化,降温后样品高度收缩2 mm,收缩率达到13.33%。经对比可发现,经放电等离子烧结Mo–30W合金的相对密度高于经真空热压烧结Mo–30W合金的相对密度。放电等离子烧结与真空热压烧结法均为加压和加热同时进行,但二者加热方式完全不同,真空热压烧结法是采用电阻辐射加热的方式实现烧结,放电等离子烧结是利用直流脉冲电流直接通电烧结的加压烧结方式,通过调节脉冲直流电的大小来控制升温速率和烧结温度。直流脉冲电流的主要作用是产生高温等离子体、放电冲击压力、焦耳热和电场扩散作用,同时放电效应能够清除粉末颗粒表面及内部残留的气体,清洁粉末颗粒表面,提高了颗粒的烧结能力[912]。放电等离子烧结与真空热压烧结相比,能够在更短的时间内获得高致密的材料。

    图4为Mo–30W合金样品经放电等离子烧结和真空热压烧结后的扫描电子显微形貌,从图中可以看出,经放电等离子烧结的样品虽然存在较多的孔洞,但晶粒间界线清晰、平直,与正常Mo合金烧结微观形貌相似,说明样品已产生金属化,已基本完成烧结过程,晶粒大小约30 μm。样品中孔洞较多是放电等离子烧结特点决定,放电等离子烧结是一种快速烧结方式[1315],升温速度快,烧结时间较短,晶体内孔洞虽然已经产生了圆化、迁移、融合,但还没有完全收缩消除,这也印证了所测样品相对密度只有93%的结果。经真空热压烧结的样品晶粒之间结合较紧密,晶界处存在孔洞,晶粒大小约50 μm。

    图  4  放电等离子烧结(a)和真空热压烧结(b)Mo–30W合金扫描电子显微形貌
    Figure  4.  SEM images of the Mo–30W alloys by SPS (a) and vacuum hot pressing sintering (b)

    通过对Mo–30W合金样品的密度和形貌的分析,发现采用放电等离子烧结方法,Mo–30W合金样品产生明显收缩,完成了基本的烧结行为,具备粉末冶金烧结过程的全部特点。随后对纯Mo、Mo–Cu合金、MoS2等不同的样品进行测试发现,不论是纯金属还是合金,或者是非金属都具有相似的烧结行为,这说明本文所探究的粉末冶金烧结行为具有普遍的适用性。

    (1)采用放电等离子烧结制备Mo–30W合金时,在烧结初期,1200 ℃之前坯体不但没有收缩,反而有较为明显的膨胀现象,膨胀最大可达6%。

    (2)采用放电等离子烧结制备Mo–30W合金时,Mo–30W合金样品粉末冶金烧结基本规律为:在烧结升温开始时,样品有微小收缩,并随温度升高试样开始膨胀;温度升到一定程度(如1200 ℃)时,样品膨胀达到最大值,随后开始收缩,且收缩速度较快;随着温度继续升高,样品收缩趋势变缓;随着降温的开始,样品有明显较大的收缩,当温度接近室温时,收缩基本停止。

    (3)使用放电等离子烧结设备可以对Mo–30W合金样品进行烧结,其相对密度可达到93%,基本完成烧结。

    (4)在直观反映Mo–30W合金烧结过程中的收缩变化规律方面,放电等离子烧结优于真空热压烧结。

  • 图  1   FGH4113A合金涡轮盘锻造毛坯宏观形貌

    Figure  1.   Forging blank macro-morphology of the FGH4113A alloy turbine disks

    图  2   低周疲劳试样尺寸示意图(单位,mm)

    Figure  2.   Schematic diagram of the low cycle fatigue specimen size (unit, mm)

    图  3   CT裂纹扩展试样尺寸示意图(单位,mm)

    Figure  3.   Schematic diagram of the CT crack growth specimen size (unit, mm)

    图  4   锻造态FGH4113A合金显微组织形貌:(a)光学显微镜;(b)扫描电镜

    Figure  4.   Microstructure morphology of the forged FGH4113A superalloys: (a) OM; (b) SEM

    图  5   亚固溶态FGH4113A合金显微组织形貌:(a)光学显微镜;(b)扫描电镜

    Figure  5.   Microstructure morphology of the FGH4113A superalloys after the subsolvus heat treatment: (a) OM; (b) SEM

    图  6   过固溶态FGH4113A合金显微组织形貌:(a)光学显微镜;(b)扫描电镜

    Figure  6.   Microstructure morphology of the FGH4113A superalloys after the supersolvus heat treatment: (a) OM; (b) SEM

    图  7   FGH4113A合金与其它典型粉末高温合金拉伸性能:(a)屈服强度;(b)抗拉强度

    Figure  7.   Tensile properties of FGH4113A and the typical PM superalloys: (a) yield strength; (b) tensile strength

    图  8   FGH4113A合金与其它典型粉末高温合金蠕变性能

    Figure  8.   Creep properties of FGH4113A and the typical PM superalloys

    图  9   FGH4113A合金与LSHR合金低周疲劳性能

    Figure  9.   Low cycle fatigue properties of FGH4113A and LSHR superalloys

    图  10   FGH4113A合金低周疲劳典型裂纹源:(a)平台型;(b)氧化铝夹杂型

    Figure  10.   Typical crack sources of the low cycle fatigue in FGH4113A superalloys: (a) plane facet; (b) alumina inclusion

    图  11   FGH4113A合金与LSHR合金裂纹扩展性能

    Figure  11.   Crack growth properties of FGH4113A and LSHR superalloys

    表  1   FGH4113A及几种典型镍基粉末高温合金的名义化学成分[913](质量分数)

    Table  1   Chemical composition of FGH4113A and the several typical Ni-based PM superalloys[913] %

    合金 Co Cr Mo W Al Ti Nb Ta Hf、Zr、B、C Ni
    FGH4113A 19.0 13.0 4.0 4.0 3.0 3.7 1.2 1.0 微量 余量
    RR1000 18.5 15.0 5.0 3.0 3.6 1.9 微量 余量
    René104 (ME3) 20.7 12.8 3.8 2.0 3.4 3.7 0.9 2.3 微量 余量
    LSHR 20.4 12.5 2.7 4.3 3.5 3.5 1.5 1.6 微量 余量
    FGH98 20.4 12.7 3.8 2.1 3.5 3.7 0.9 2.4 微量 余量
    FGH99 20.0 13.0 2.7 4.3 3.6 3.5 1.5 1.6 微量 余量
    ME501 18.0 12.0 2.9 3.0 3.0 3.0 1.5 4.8 微量 余量
    Alloy A 23.4 13.6 3.0 1.6 2.9 4.0 3.8 微量 余量
    Alloy B 23.3 13.5 3.0 1.6 2.9 4.0 1.6 3.7 微量 余量
    TSNA-1 19.0 10.9 2.6 4.5 2.9 3.0 1.4 5.0 微量 余量
    下载: 导出CSV
  • [1] 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application. Acta Metall Sinica, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    [2]

    Reed R C. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2008

    [3] 傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    [4] 张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387

    Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387

    [5]

    Qiu C L, Wu X H, Mei J F, et al. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J Alloys Compd, 2013, 578: 454 DOI: 10.1016/j.jallcom.2013.06.045

    [6] 黄海亮. 先进PM高温合金FGH98合金制备和性能表征相关基础问题的研究[学位论文]. 北京: 北京科技大学, 2020

    Huang H L. Research on Related Fundamental Issues of Preparation and Property Characterization of Advanced PM Superalloy FGH98 [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    [7] 程俊义, 熊江英, 刘朝峰, 等. 一种新型第三代镍基粉末高温合金亚固溶热处理调控γ'相分布的研究. 稀有金属材料与工程, 2023, 52(2): 699 DOI: 10.12442/j.issn.1002-185X.20220067

    Chen J Y, Xiong J Y, Liu C F, et al. Sub-solvus heat treatment study on the γ' distribution of novel nickel-based superalloy. Rare Met Mater Eng, 2023, 52(2): 699 DOI: 10.12442/j.issn.1002-185X.20220067

    [8] 程俊义, 朱立华, 马向东, 等. 一种新型镍基粉末高温合金的过固溶热处理研究. 稀有金属材料与工程, 2022, 51(10): 3722

    Chen J Y, Zhu L H, Ma X D, et al. Super-solvus heat treatment study of novel nickel-based superalloy. Rare Met Mater Eng, 2022, 51(10): 3722

    [9] 马向东, 何英杰, 李远, 等. 一种新型镍基粉末高温合金等温热压缩过程中的超塑性变形行为研究. 稀有金属材料与工程, 2022, 51(9): 3307

    Ma X D, He Y J, Li Y, et al. Superplastic deformation behavior of nickel-based powder superalloy during isothermal hot compression. Rare Met Mater Eng, 2022, 51(9): 3307

    [10] 杨金龙, 马向东, 李远, 等. 一种新型镍基粉末高温合金不同状态热变形行为. 稀有金属材料与工程, 2022, 51(2): 651

    Yang J L, Ma X D, Li Y, et al. Thermal deformation behavior of novel ni-based PM superalloy under different initial conditions. Rare Met Mater Eng, 2022, 51(2): 651

    [11]

    Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3. NASA/TM, 2002: 211796

    [12]

    Gabb T P, Gayda J, Kantzos P T, et al. Thermal and mechanical property characterization of the advanced disk alloy LSHR. NASA/TM, 2005: 213645

    [13]

    Huang H L, Liu G Q, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy. J Alloys Compd, 2019, 805: 1254 DOI: 10.1016/j.jallcom.2019.07.221

    [14]

    Gayda J, Furrer D. Dual-micro structure heat treatment. Adv Mater Processes, 2003, 161(7): 36

    [15]

    Mitchell R J, Lemsky J A, Ramanathan R, et al. Process development and microstructure and mechanical property evaluation of a dual microstructure heat treated advanced nickel disc alloy // Superalloys 2008. Champion, 2008: 347

    [16] 郭建亭. 高温合金材料学. 北京: 科学出版社, 2008

    Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008

    [17]

    Mcdowell D L. Viscoplasticity of heterogeneous metallic materials. Mater Sci Eng R, 2008, 62(3): 67 DOI: 10.1016/j.mser.2008.04.003

    [18]

    Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review. Int J Fatigue, 2020, 141: 105887 DOI: 10.1016/j.ijfatigue.2020.105887

    [19]

    Bache M R, O’Hanlon J, Child D J, et al. High temperature fatigue behaviour in an advanced nickel based superalloy: The effects of oxidation and stress relaxation at notches. Theor Appl Fract Mech, 2016, 84: 64 DOI: 10.1016/j.tafmec.2016.03.007

    [20]

    Jiang R, Zhang L C, Zhang W T, et al. Low cycle fatigue and stress relaxation behaviours of powder metallurgy Ni-based superalloy FGH4098. Mater Sci Eng A, 2021, 87: 141421

    [21]

    Liu L Z, Gao Y F, Wu X H, et al. High-temperature fatigue crack growth behaviour of GH4169 alloys with different heat treatment methods. Int J Fatigue, 2022, 236(2): 161

  • 期刊类型引用(1)

    1. 陈昆昆,孟晗琪,杨阳. 致密铼粒的制备研究. 广州化工. 2024(17): 34-36 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  960
  • HTML全文浏览量:  87
  • PDF下载量:  76
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-06-04
  • 录用日期:  2023-06-04
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回