高级检索

不同雾化压力下GH3536合金粉末制备和气雾化过程模拟

Atomization simulation and preparation of GH3536 powders at different atomization pressures

  • 摘要: 使用真空感应熔炼气体雾化方法,在不同雾化压力(7、8、9 MPa)下制备了球形GH3536合金粉末。通过使用多相流模型和离散相模型对喷嘴下方区域进行了数值模拟,再现了不同雾化气压下的一次雾化和二次雾化过程。实验和模拟的结果表明:回流区的气体速度和滞止压力随雾化气压的提高而增加,雾化气压的增加使粉末粒度不断减小,模拟结果与实验结果吻合,验证了雾化模型的可靠性。提高雾化气压可提高细粉收得率,但颗粒尺寸的减小和颗粒形貌的改变会对粉末的流动性能造成直接影响,在雾化压力8 MPa下制备的粉末具有最佳的流动性和松装密度,分别为14.34 (s·50g−1)和4.728 g·cm−3

     

    Abstract: Spherical GH3536 alloy powders were prepared by vacuum induction-melting gas atomization method at the different atomization pressures (7, 8, 9 MPa). The region below the nozzle was numerically simulated by multiphase flow model and discrete phase model, and the primary and secondary atomization processes at the different atomization pressures were reproduced. In the results, the flow velocity and stagnation pressure in the recirculation zone increase with the increase of atomization pressure. With the increase of atomization pressure, the powder particle size decreases continuously. The simulation results are similar with the experimental results, verifying the reliability of the atomization model. The increase of atomization pressure can increase the yield of fine powders, but the decrease of particle size and the change of particle morphology may directly affect the powder flowability. The powders prepared at the atomization pressure of 8 MPa show the best flowability and the optimum apparent density, which are 14.34 (s·50g−1) and 4.728 g·cm−3, respectively.

     

/

返回文章
返回