Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology
-
摘要:
以偏钨酸铵和硝酸铜为原料,采用溶胶–凝胶法结合氢还原制备了Cu–20%W(质量分数)超细粉末,经压制烧结获得Cu–20W复合材料。对粉体的形貌和粒度进行表征,并考察烧结温度对Cu–20W烧结体试样组织和性能的影响。结果表明:通过溶胶–凝胶法结合氢还原可制备出平均粒度小于100 nm的Cu–20W复合粉末;随烧结温度的升高,Cu–20W烧结体试样的物理性能和力学性能提高。
1080 ℃烧结所得试样的相对密度达97.20%,电导率(IACS)、热导率、显微硬度和抗拉强度分别达到91.73%、351.52 W·m−1·K−1、HV 96.1和431.03 MPa;在100~400 ℃温度范围内,Cu–20W试样的热膨胀系数在14.871×10−6~17.422×10−6·K−1。-
关键词:
- Cu–20W超细粉末 /
- 溶胶–凝胶法 /
- 烧结性能 /
- 物理性能 /
- 力学性能
Abstract:Cu–20%W (mass fraction) ultrafine composite powders were prepared by the combination of sol–gel with hydrogen reduction method, using ammonium metatungstate and copper nitrate as the raw materials, and the Cu–20W samples were obtained by pressing and sintering. The morphology and particle size of the powders were characterized, and the effects of sintering temperatures on the microstructure and properties of the Cu–20W sintered samples were investigated. The results show that the Cu–20W composite powders are obtained by the combination of sol–gel with hydrogen reduction method with the average particle size of less than 100 nm. With the increase of sintering temperature, the physical and mechanical properties of the sintered Cu–20W samples are improved. The relative density of the samples sintered at
1080 ℃ is 97.20%, the electrical conductivity (IACS), thermal conductivity, Vickers hardness, and tensile strength are reached as 91.73%, 351.52 W·m–1·K–1, HV 96.1, and 431.03 MPa, respectively. In the temperature range of 100~400 ℃, the coefficient of thermal expansion for the sintered Cu–20W samples is 14.871×10–6~17.422×10–6·K–1. -
锆酸钙材料(CaZrO3)具有优秀的抗水化性能、高熔点及良好的抗热震性能[1-5],拥有广阔的应用前景,由于自然界中不存在天然的CaZrO3,研究锆酸钙材料的合成就显得非常必要。制备CaZrO3的方法主要包括高温固相反应法、共沉淀法、溶胶-凝胶法、燃烧法和水热法等[6-8],高温固相法由于工艺简单、生产成本较低和生产量大等优点被人们广泛使用,但这种方法存在烧结温度高、制备锆酸钙致密性差等缺点。为了解决这些问题,研究者们在制备锆酸钙材料过程中向物系添加少量稀土氧化物、Al2O3、SiO2、CuO等添加剂,用于促进锆酸钙在低温下的烧结致密化;这些添加剂虽然可以起到促进锆酸钙材料烧结致密性的作用[9-11],但也会带来外来物质,降低CaZrO3高温使用性能。
CaCO3作为制备CaZrO3的添加剂在高温下分解生成CaO,不会对CaZrO3产生污染;同时,由于CaCO3和制备原料Ca(OH)2分解温度不同,产生CaO晶体顺序不同,可以对CaO晶体质点的扩散产生影响。故本文考虑向锆酸钙材料中添加少量CaCO3微粉,利用分解温度不同,生成CaO晶体顺序不同,促进CaZrO3烧结致密性,降低锆酸钙烧结温度。
1. 实验材料及方法
1.1 实验材料
以天津市科密欧化学试剂有限公司生产的分析纯Ca(OH)2和天津市光复精细化工研究生产的m-ZrO2为主要原料(平均粒度为7.4 μm和4.5 μm,纯度大于99%),实验中添加的CaCO3微粉为高纯微粉,纯度大于99%,其粒度分布如图 1示。可以看出,CaCO3微粉粒度较小,主要粒度分布在10 μm左右,D50为6 μm,D90为24 μm。
1.2 实验过程及方法
将Ca(OH)2和m-ZrO2按摩尔比1:1称量,等量分成五组,每组混合粉末中依次加入质量分数为0%、2%、4%、6%、8%和10%CaCO3微粉,再用卧式球磨机混合12 h,经过FLS手动四柱油压机在200 MPa压力下将混合粉末压制成ϕ20 mm圆柱试样,再用硅钼棒高温烧结炉在1600 ℃加热并保温3 h后随炉冷却到常温以备性能检测。
烧结前将压好的试样放置在烘箱内110 ℃下保温24 h,取出冷却至常温,测量其高度(L0);试样经高温煅烧,冷却到常温后测量其烧后高度(L1),根据式(1)计算试样烧结前后线变化率(ΔLd)。
$$ \Delta {L_{\rm{d}}} = \left[ {\left( {{L_1} - {L_0}} \right)/{L_0}} \right] \times 100\% $$ (1) 利用阿基米德排水法检测试样煅烧后的体积密度和显气孔率[12]。煅烧后试样经切割、抛光及热处理后,采用扫描电子显微镜(scanning electron microscope,SEM)观察其组织形貌,使用X射线衍射仪(X-ray diffractometer,XRD)对其进行物相分析。
2. 结果与讨论
2.1 烧结性能
图 2为烧结前后试样线变化率,从图 2可以看到,CaCO3微粉加入会改变试样线变化率。没有添加CaCO3微粉时,试样烧结前后线变化率为8.23%;当添加CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量增大,试样烧结前后线变化率逐渐增大;当加入CaCO3微粉质量分数为8%时,试样收缩率达到最大值,为14.89%;继续增大CaCO3微粉添加量,试样烧结前后线变化率呈降低趋势。
图 3为高温煅烧后制备的锆酸钙体积密度和显气孔率,由图 3可以看到,CaCO3微粉的引入对制备的锆酸钙烧结性能产生影响。当没有添加CaCO3微粉时,制备的锆酸钙体积密度为3.4 g·cm-3,显气孔率为14.5%;随CaCO3质量分数增加,制备锆酸钙体积密度逐渐增加,显气孔率逐渐减小;当CaCO3微粉添加量为8%时,制备锆酸钙的体积密度最大,为4.02 g·cm-3,显气孔率最小,为8.6%;当CaCO3质量分数继续增大时,锆酸钙的体积密度开始降低,显气孔率反增大。
图 4为添加质量分数10%CaCO3制备样品的X射线衍射图谱,从图中可以看出,样品经1600 ℃保温3 h后主要物相为CaZrO3以及少量CaZr4O18。
2.2 材料微观结构
图 5为添加不同质量分数CaCO3微粉的样品在1600 ℃烧后放大10000倍的扫描电子显微组织结构图。从图 5可以看出,CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量的增大,试样致密性逐渐增加,锆酸钙晶粒尺寸逐渐变大,且晶体发育越来越均匀;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸最大,试样中基本无封闭气孔;当CaCO3微粉质量分数继续增大时,样品中出现封闭气孔,致密性变差,锆酸钙晶粒尺寸有变小趋势。
利用图象处理软件对图 5进行定量晶体大小测定,获得锆酸钙的平均晶粒尺寸,见表 1。可以发现,没有引入CaCO3微粉时,样品中锆酸钙晶粒尺寸最小为4.08 μm;随CaCO3微粉质量分数增大,锆酸钙晶粒尺寸逐渐增大;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸达到最大,为5.45 μm;当CaCO3微粉质量分数量继续增大时,锆酸钙晶粒尺寸反而变小。
表 1 样品中CaCO3质量分数与锆酸钙晶粒直径的关系Table 1. Relationship between CaZrO3 particle diameter and CaCO3 addition content by massCaCO3质量分数/% 0 2 4 6 8 10 CaZrO3晶粒直径/μm 4.08 4.43 4.88 5.08 5.45 5.21 2.3 促烧机理
为了分析CaCO3微粉对锆酸钙烧结性能的影响,选取添加质量分数8%CaCO3微粉的试样,分别在500、600、700、800、900、1000及1100 ℃下保温3 h,分析在各个温度下烧后试样物相组成。图 6为试样在不同温度烧结后X射线衍射图谱。可以看出,试样经过500 ℃保温3 h后,物相组成没有太大变化;经过600 ℃保温3 h后,物相中开始有少量CaO出现,这是因为Ca(OH)2分解为CaO温度为580 ℃左右[13];当试样在700、800 ℃保温3 h后,Ca(OH)2质量分数逐渐减少,衍射峰逐渐减弱,CaO质量分数逐渐增大,衍射峰峰强逐渐增强,CaCO3衍射峰强在700 ℃之前逐渐增强,这是因为随烧结温度的升高,CaCO3晶粒发育越来越充分,烧成温度达到800 ℃时,CaCO3衍射峰强开始减弱,说明CaCO3开始分解为CaO;烧结温度为900 ℃时,CaCO3衍射峰逐渐减弱,CaO峰强增加迅速,这是因为CaCO3理论分解温度为850 ℃左右[14],分解生成高活性的CaO微晶均匀附着在Ca(OH)2分解形成CaO晶体表面,从而有利于CaO晶体扩散,可以促进CaO晶体长大,提高了CaO晶体的均匀性和生长致密性;继续升高烧结温度,CaCO3衍射峰强逐渐减弱乃至消失。
当烧结温度达到900 ℃时,物相中开始出现CaZrO3衍射峰,说明开始生成CaZrO3。随烧结温度的提高,CaZrO3衍射峰强增加迅速,一部分原因是因为温度升高,CaZrO3迅速长大,另一部分原因是因为CaCO3分解CaO微晶附着在Ca(OH)2分解形成的CaO晶体表面,促进CaO晶体长大,为高温下CaO和ZrO2反应生成CaZrO3奠定基础。但添加过多的CaCO3微粉时,由于CaCO3在分解过程中产生过量CO2气体逸出形成大量的气体孔洞,不利于质点的迁移,导致烧结性能变差。
3. 结论
(1)添加少量CaCO3微粉有利于锆酸钙烧结致密性。没有添加CaCO3微粉时,烧结温度为1600 ℃,锆酸钙体积密度为3.40 g·cm-3,显气孔率为14.5%;添加质量分数8%CaCO3微粉时,锆酸钙体积密度为4.02 g·cm-3,显气孔率为8.6%。
(2)添加少量CaCO3微粉有利于锆酸钙晶粒长大。烧结温度为1600 ℃,无添加CaCO3微粉时,锆酸钙晶粒尺寸为4.08 μm;添加质量分数8%CaCO3微粉时,锆酸钙晶粒尺寸为5.45 μm。
-
表 1 Cu–20W粉末压坯经过不同温度烧结所得烧结体的密度和相对密度
Table 1 Density and relative density of the Cu–20W samples sintered at different temperatures
烧结温度 / ℃ 密度 / (g·cm–3) 相对密度 / % 930 8.10 80.69 980 8.51 84.78 1030 8.84 88.05 1080 9.75 97.20 -
[1] Zheng L L, Liu J X, Li S K, et al. Preparation and properties of W–Cu–Zn alloy with low W–W contiguity. Rare Met, 2016, 35(3): 242 DOI: 10.1007/s12598-015-0570-x
[2] Han T L, Hou C, Zhao Z, et al. W–Cu composites with excellent comprehensive properties. Composites Part B, 2022, 233: 109664 DOI: 10.1016/j.compositesb.2022.109664
[3] Liu B B, Xie J X, Qu X H. Fabrication of W–Cu functionally graded materials with high density by particle size adjustment and solidstate hot press. Compos Sci Technol, 2008, 68(6): 1539 DOI: 10.1016/j.compscitech.2007.10.023
[4] 寸敏敏, 陈文革, 颜国君, 等. 多次烧结对钨铜合金组织与性能的影响. 粉末冶金技术, 2017, 35(4): 243 Cun M M, Chen W G, Yan G J, et al. Influence of multiple sintering on microstructure and properties of W–Cu alloy. Powder Metall Technol, 2017, 35(4): 243
[5] Zhang X H, Zhang Y, Tian B H, et al. Thermal deformation behavior of the Al2O3–Cu/(W, Cr) electrical contacts. Vacuum, 2019, 164: 361 DOI: 10.1016/j.vacuum.2019.03.054
[6] Johnson J L. Activated liquid phase sintering of W–Cu and Mo–Cu. Int J Refract Met Hard Mater, 2015, 53: 80 DOI: 10.1016/j.ijrmhm.2015.04.030
[7] Ibrahim H, Aziz A, Rahmat A. Enhanced liquid–phase sintering of W–Cu composites by liquid infiltration. Int J Refract Met Hard Mater, 2014, 43: 222 DOI: 10.1016/j.ijrmhm.2013.12.004
[8] Wei B Z, Yu X X, Chen R Z, et al. A novel approach to fabricate W–Cu functionally graded materials via sedimentation and infiltration method. Mater Sci Eng A, 2021, 816: 141271
[9] Wang X R, Wei S Z, Xu L J, et al. Effect of sintering temperature on fine–grained Cu–W composites with high copper. Mater Charact, 2019, 153: 121 DOI: 10.1016/j.matchar.2019.04.017
[10] Li X Q, Zhang M J, Zhang G S, et al. Research on the hot deformation behavior of Cu–20wt%W composite under different temperatures. Mater Sci Eng A, 2022, 830: 142326 DOI: 10.1016/j.msea.2021.142326
[11] Lu T X, Chen C G, Guo Z M, et al. Tungsten nanoparticle–strengthened copper composite prepared by a sol–gel method and in-situ reaction. Int J Miner Metall Mater, 2019, 26(11): 1477 DOI: 10.1007/s12613-019-1889-3
[12] Kim D G, Kim G S, Suk M J, et al. Effect of heating rate on microstructural homogeneity of sintered W–15wt%Cu nanocomposite fabricated from W–CuO powder mixture. Scr Mater, 2004, 51(7): 677 DOI: 10.1016/j.scriptamat.2004.06.014
[13] Zhang Q, Cheng Y, Chen B J, et al. Microstructure and properties of W–25wt%Cu composites reinforced with tungsten carbide produced by an in situ reaction. Vacuum, 2020, 177: 109423 DOI: 10.1016/j.vacuum.2020.109423
[14] Ardestani M, Rezaie H R, Arabi H, et al. The effect of sintering temperature on densification of nanoscale dispersed W–20–40%wt Cu composite powders. Int J Refract Met Hard Mater, 2009, 27(5): 862 DOI: 10.1016/j.ijrmhm.2009.04.004
[15] da Costa F A, da Silva A G P, Umbelino Gomes U. The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technol, 2003, 134(1-2): 123 DOI: 10.1016/S0032-5910(03)00123-2
[16] Hong S H, Kim B K. Fabrication of W–20wt% Cu composite nanopowder and sintered alloy with high thermal conductivity. Mater Lett, 2003, 57(18): 2761 DOI: 10.1016/S0167-577X(03)00071-5
[17] Wan L, Cheng J G, Fan Y M, et al. Preparation and properties of superfine W–20Cu powders by a novel chemical method. Mater Des, 2013, 51: 136 DOI: 10.1016/j.matdes.2013.04.028
[18] Li C G, Zhou Y H, Xie Y H, et al. Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W–20wt.%Cu alloy. J Alloys Compd, 2018, 731: 537 DOI: 10.1016/j.jallcom.2017.10.081
[19] Cheng J G, Song P, Gong Y F, et al. Fabrication and characterization of W–15Cu composite powders by a novel mechano-chemical process. Mater Sci Eng A, 2008, 488(1-2): 453 DOI: 10.1016/j.msea.2007.11.022
[20] Guo Y J, Guo H T, Gao B X, et al. Rapid consolidation of ultrafine grained W–30 wt.% Cu composites by field assisted sintering from the sol–gel prepared nanopowders. J Alloys Compd, 2017, 724: 155
[21] Cheng J G, Lei C P, Xiong E T, et al. Preparation and characterization of W–Cu nanopowders by a homogeneous precipitation process. J Alloys Compd, 2006, 421(1-2): 146 DOI: 10.1016/j.jallcom.2005.08.087
[22] Fan J L, Liu T, Zhu S, et al. Synthesis of ultrafine/nanocrystalline W–(30–50)Cu composite powders and microstructure characteristics of the sintered alloys. Int J Refract Met Hard Mater, 2012, 30(1): 33 DOI: 10.1016/j.ijrmhm.2011.06.011
[23] Gao J X, Li Y G, Tian Y, et al. Ultrafine W–Cu composite powder research progress. Adv Mater Res, 2012, 535-537: 86 DOI: 10.4028/www.scientific.net/AMR.535-537.86
[24] Chen P A, Luo G Q, Shen Q, et al. Thermal and electrical properties of W–Cu composite produced by activated sintering. Mater Des, 2013, 46: 101 DOI: 10.1016/j.matdes.2012.09.034
[25] Kim Y D, Oh N L, Oh S T, et al. Thermal conductivity of W–Cu composites at various temperatures. Mater Lett, 2001, 51(5): 420 DOI: 10.1016/S0167-577X(01)00330-5
[26] Li P, Chen C G, Qin Q, et al. Sintering microstructure and properties of copper powder prepared by electrolyzation and atomization. J Central South Univ, 2021, 28(7): 1966 DOI: 10.1007/s11771-021-4745-3
-
期刊类型引用(1)
1. 路跃,刘国齐,杨文刚,燕鹏飞,马渭奎,李红霞. 烧结助剂对锆酸钙材料性能的影响. 耐火材料. 2023(05): 407-411 . 百度学术
其他类型引用(1)