-
摘要:
以硅粉为原料,采用直接氮化法制备高品质氮化硅陶瓷粉体,研究了氮化温度、升温速率、硅粉粒径及稀释剂用量对氮化硅陶瓷粉体的影响。结果表明,原料硅粉不添加稀释剂,反应温度为
1400 ℃时,在1100 ~1400 ℃温度区间将升温速率控制在5 ℃·min−1,硅粉完全氮化,制备得到粒径均匀的(396~458 nm)类球状氮化硅材料,材料分散性好,α相质量分数高达95.02%。研究表明,随着氮化温度的升高,硅粉直接氮化反应呈现出明显的阶段性。在相同反应时间下,最佳氮化温度为1400 ℃,反应温度过高或过低都会影响硅粉界面α-Si3N4向β-Si3N4转变与内部氮化反应的竞争关系,影响α-Si3N4含量。升温速率为控制反应进程的关键因素,最佳升温速率为5 ℃·min−1,当升温速率过快或者过慢时,氮化硅α相到β相的转化程度超过内部反应程度,硅粉反应不完全。适宜的球磨时间能够减小原料硅粉的粒度,增加比表面积,同时增加硅粉与氮气接触面积,有利于提高氮化率,增加α-Si3N4质量分数。添加α-Si3N4粉末稀释剂能降低硅粉中的氧含量和氮化温度,加速氮化过程,促进产物中α-Si3N4的形成,还能吸收硅和氮之间反应释放的额外热量,起到受热体的作用。Abstract:High-quality silicon nitride ceramic powders were prepared by direct nitriding method with silicon powders as the raw materials. The effects of nitriding temperature, heating rate, particle size of silicon powders, and dosage of diluent on the silicon nitride ceramic powders were studied. In the results, when the reaction temperature is
1400 ℃ and the heating rate is controlled at 5 ℃·min−1 during1100 ~1400 ℃, the raw silicon powders without the Si3N4 diluent are completely nitrided, the spherical silicon nitride materials with the uniform particle size (396~458 nm) and good dispersion are prepared, and the mass fraction of the α phase is 95.02%. The results show that, with the increase of nitriding temperature, the direct nitriding reaction of silicon powders shows an obvious stage. At the same reaction time, the best nitriding temperature is1400 ℃, too high or too low reaction temperature could affect the competitive relationship between the transition from α-Si3N4 to β-Si3N4 at the silicon powder interface and the internal nitriding reaction, affecting the content of α-Si3N4. The heating rate is the key factor to control the reaction process, and the optimal heating rate is 5 ℃·min−1. When the heating rate is too fast or too slow, the transformation degree of silicon nitride from α phase to β phase exceeds the internal reaction degree, and the silicon powder reaction is incomplete. The suitable milling time can reduce the particle size of raw silicon powders, increase the specific surface area, and increase the contact area between silicon powders and nitrogen, which can improve the nitriding rate and increase the mass fraction of α-Si3N4. The addition of α-Si3N4 diluent can reduce the oxygen content and nitriding temperature of silicon powders, accelerate the nitriding process, and promote the formation of α-Si3N4 in the product. It can also absorb the additional heat released by the reaction between silicon and nitrogen, and mainly plays the role of heating body in the direct nitriding reaction of silicon powders.-
Keywords:
- silicon nitride /
- direct nitriding method /
- ceramic powders /
- heating rate /
- α-Si3N4
-
钨是一种难熔金属,具有高硬度、高密度和较好的高温强度,钨合金在保留钨原有特性的同时,兼具高的耐磨性、耐腐蚀性和稳定性,因此,钨合金在军工、电子电气、医疗等行业都有广泛的应用[1]。随着科学技术的日新月异,各行业对钨合金材料提出了更高的要求。钨钛合金主要用于磁控溅射靶材,研究发现,其溅射性能与靶材的晶粒度密切相关,随着靶材晶粒的细化,溅射速率明显升高[2],因此细化合金组织是提升材料性能最有效的途径之一,超细晶甚至纳米晶合金材料是目前研究与未来发展的主要趋势[3−4]。但是,超细晶与纳米晶结构的金属是不稳定的,大量晶界的存在导致合金内部能量增大,使得晶粒在烧结致密化过程中极易长大,弱化了材料的性能。因此,在烧结过程中,既要尽可能多地去除孔隙和缺陷,又要避免晶粒的过度长大,在两者之间寻求一个平衡是非常必要且具有挑战性的。
粉末冶金技术是制备钨材料最常用的方法之一,但长时间的烧结带来了晶粒粗大等不可避免的问题。放电等离子烧结(spark plasma sintering,SPS)具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,能有效细化合金组织;同时,通–断式直流脉冲电流对合金粉末的加压烧结提高了合金的相对密度[5−6]。本文采用放电等离子烧结技术制备晶粒尺寸在亚微米级的超细晶钨钛合金,探讨了Ti含量(原子数分数)对烧结致密化与细化晶粒的作用。
1. 实验材料及方法
实验所用的原料粉末有W粉(纯度≥99.8%)和Ti粉(纯度≥99.5%),分别按原子数分数为W85Ti15、W80Ti20、W75Ti25和W70Ti30制备钨钛合金。按上述比例将W粉和Ti粉称量后放入球磨罐中,将球磨罐抽真空并充入氮气,在Spex 8000D振动球磨机上进行球磨,球料比为3:1,转速为1725 r·min−1,球磨时间为30 h。取约12 g混合粉末放入ϕ15 mm×30 mm的石墨模具内,将模具摆放至设备腔体中心,在轴向压力与电流的作用下进行烧结,具体工艺参数为:系统真空度抽至6×10−3 Pa,烧结压力为20 MPa,以50 ℃·min−1的升温速率升至1100 ℃,保温5 min后随炉冷却,冷却至室温再撤去压力。烧结后的块体试样尺寸为ϕ15 mm×5 mm,如图1所示。
块体试样经表面磨光、清洗后,采用排水法测定烧结块体的密度;利用K3Fe(CN)6和NaOH水溶液(10 g K3Fe(CN)6 + 10 g NaOH + 100 mL蒸馏水)对钨合金块体试样进行腐蚀,并使用Quanta FEI 250F扫描电镜(scanning electron microscope,SEM)观察试样显微组织与形貌;通过Bruker D8 Advance型X射线衍射仪(X-ray diffraction,XRD)和能谱仪(energy disperse spectroscope,EDS)分析试样物相与成分;采用显微硬度计和万能试验机测量试样硬度与测试试样力学性能。
2. 结果与分析
2.1 粉末烧结与烧结试样密度
图2为原始W粉、原始Ti粉和球磨30 h后W75Ti25复合粉末的显微形貌。如图所示,原始W粉呈多面体型,平均颗粒大小在0.5~3 μm之间,粒度分布不均匀;原始Ti粉的平均颗粒尺寸约30 μm,呈现不规则形状;W75Ti25复合粉末经30 h球磨后,粉末颗粒得到了极大的细化,平均颗粒尺寸约300 nm,形状为近球形,存在少量团聚现象。
图3为实验粉末和W75Ti25烧结样品的X射线衍射图谱。由图可知,由于晶粒细化,钨钛混合粉末的衍射峰发生了明显宽化,长时间的球磨使Ti与W形成了钛钨固溶体,衍射峰向低角度发生了轻微的偏移。
图4为W75Ti25合金烧结过程中温度、位移和位移变化率随时间的变化曲线。由图4可知,温度从室温升至350 ℃过程中,位移变化相对缓慢,此阶段为粉末颗粒的活化与重排阶段,在轴向压力与初始脉冲电流的作用下,产生能量较低的焦耳热与放电热,粉末颗粒的活性增加,颗粒表面得到净化,有利于后续烧结的致密化与均匀化[7]。当温度继续升高至900 ℃,这个过程中位移发生了明显的变化,位移变化率在此期间也达到了峰值,该阶段为主要的烧结阶段。持续的放电效应使粉体活化能极大增高,过饱和的Ti从W中析出,有利于颗粒间的连接,加速了致密化过程。随着温度继续升高至1100 ℃,位移基本不再变化,位移变化率也逐渐减小至0,孔隙基本得到消除,相对密度已达到最大值。
烧结样品相对密度如表1所示,其中实际密度为五次测量的平均值。尽管烧结温度低于常规钨合金烧结温度约200~300 ℃[8],样品相对密度仍在95%以上,这是由于球磨带来了大量缺陷,有利于原子扩散和物质迁移,同时放电等离子烧结过程中焦耳热和放电热的作用使得原子结合更加紧密[9]。
表 1 烧结样品的性能Table 1. Properties of the sintered samples合金成分(原子数分数)/
%理论密度 /
(g·cm−3)实际密度 /
(g·cm−3)相对密度(±0.1)/
%硬度(±2),
HV抗压强度(±10)/
MPaW85Ti15 16.87 16.31 96.7 827 2017 W80Ti20 16.08 15.55 96.7 840 2233 W75Ti25 15.30 15.06 98.5 860 2600 W70Ti30 14.52 13.93 96.0 776 1607 2.2 显微组织
图5为烧结试样腐蚀后显微形貌。结合图3和图5可知,采用放电等离子烧结制备的W–Ti合金主要存在浅灰色和深灰色两种区域,王庆相等[10]认为,按Ti含量的不同,两区域可分为富Ti的β1(Ti,W)相和富W的β2(Ti,W)相,两相都是具有BCC结构的TixW1‒x固溶体。表2所示能谱分析表明,浅灰色区W原子数分数在94%以上,深灰色区W原子数分数在23%~38%之间。长时间的球磨后,Ti与W形成过饱和固溶体,在烧结过程中,部分Ti从W中析出,形成富Ti相,另一部分则仍固溶于W中,随着Ti含量的增多,富W相β2比例减少,富Ti相β1增多。W70Ti30的富Ti相最粗大,容易带来缺陷。
表 2 烧结W–Ti合金能谱分析Table 2. EDS analysis of the sintered W–Ti alloys合金成分(原子数分数)/ % 浅灰色区(原子数分数)/ % 深灰色区(原子数分数)/ % 富W相占比 / % W Ti W Ti W85Ti15 97.14 2.86 23.68 76.32 83.34 W80Ti20 97.10 2.90 36.87 63.13 78.82 W75Ti25 94.97 5.03 37.44 62.56 62.90 W70Ti30 94.89 5.11 37.73 62.27 53.66 在放电等离子烧结过程中,电源通入直流脉冲电流,产生放电等离子体,等离子活化作用使粉末颗粒紧密粘结在一起[11],亮灰色部分的富W相相互连通,构成了组织的基体,深色部分的富Ti相均匀分布其中。采用放电等离子烧结制备的W–Ti合金晶粒尺寸都在亚微米量级,样品的平均W晶粒尺寸均小于700 nm,分别为600 nm、550 nm、340 nm和630 nm(误差为±20 nm),实验结果表明,Ti原子数分数为25%时,烧结组织最细小,在该成分下两相的相互作用达到了最优状态。
2.3 力学性能
烧结样品的部分力学性能如表1所示,随Ti含量的增加,样品的硬度和抗压强度都是先上升后下降,当Ti原子数分数为25%时,硬度和抗压强度达最大值,分别为HV(860±2)和(2600±10)MPa。影响钨钛合金性能的因素有很多,包括合金的相对密度、晶粒度、β1与β2的比例等,本实验中,W75Ti25样品的晶粒最细小,细晶强化作用明显,同时其相对密度也最大,因此力学性能最好,此时β2相占比为62.90%。
2.4 超细晶形成机制
表3列举了一些钨合金的制备方法及其晶粒尺寸,经对比,本文制备的钨合金组织处于较细小的范围内,这主要是由于合金成分组成和制备方法两方面的原因。
表 3 一些钨合金的制备方法与W晶粒尺寸Table 3. Preparation methods and the W grain size for the tungsten alloys成分组成 / % 制备方法 晶粒尺寸 参考文献 95W(质量分数) 两步烧结 20 μm [12] W90Ti10(质量分数) 冷压烧结 ≤2 μm(1500 ℃) [13] 溶渗法 15 μm(1800 ℃) [10] 液相烧结 20 μm(1750 ℃) W–4.9Ni–2.1Fe(质量分数) 放电等离子烧结 10 μm(1400 ℃) [3] 热静液挤压 20 μm(挤压态) [14] W–1.0ZrC(质量分数) 放电等离子烧结 ≤2.7 μm(800 ℃) [15] W80Cu20(质量分数) 微波烧结 ≤2 μm(1200 ℃) [16] W–20Mn–17Ti(原子数分数) 冷压烧结 ≤2 μm(1425 ℃) [17] W–10Cr–1Hf(质量分数) 放电等离子烧结 ≤800 nm(1200 ℃) [18] W–2Ti–2TiN(质量分数) 放电等离子烧结 510 nm(1600 ℃) [19] W75Ti25(原子数分数) 放电等离子烧结 340 nm(1100 ℃) 本文数据 从合金内部热力学机制来看,合金化是细化组织的有效方法,合金元素向晶界偏聚可以有效降低界面处的能量,抑制由大量晶界能导致的晶粒长大,当向纯金属中加入合金元素时,溶质原子向晶界的偏析可以降低晶界能,此时的晶界能(γ)[20]如式(1)所示。
$$\gamma {\rm{ = }}{\gamma _0} - \Gamma (\Delta {H^{{\rm{seg}}}} + kT\ln X)$$ (1) 式中:γ0为纯金属的晶界能,Γ代表了晶界处的过饱和,∆Hseg为分离焓,k和T分别为玻尔兹曼常数和绝对温度,X为溶质元素含量。Γ通过∆Hseg和kTlnX实现了降低焓、增加熵的目的。
在二元合金系统中,混合焓为∆Hmix=zωcX(1−X)[20],它描述的是晶粒内部的相互作用;分离焓为
$\Delta {H^{{\rm{seg}}}} = z\left( {{\omega _{\rm{c}}} - \dfrac{{{\omega _{{\rm{gb}}}}}}{2} - \dfrac{{{\varOmega ^{\rm{B}}}{\gamma ^{\rm{B}}} - {\varOmega ^{\rm{A}}}{\gamma ^{\rm{A}}}}}{2}} \right)$ [20],它描述的是晶粒和晶界的相互作用,其中z为配位数,ωc和ωgb分别为晶粒和晶界的相互作用参数,Ω和γ分别代表原子体积和晶界能,上标A、B表示不同的元素。混合焓∆Hmix的值可通过Miedema模型、相图计算或者实验数据得到。文献[21]通过相图计算给出了∆Hmix在1100 ℃时为20 kJ·mol−1,为正值,即对于W–Ti二元系统,两元素在该温度下是有分离趋势的。利用文献[22‒23]提出的∆Hseg计算方法,结合文献[24–27]给出的ΩW=9.52 cm3、ΩTi=10.64 cm3、
$\gamma _{\rm{S}}^{\rm{W}}$ =3.675 J·m−2、$\gamma _{\rm{S}}^{{\rm{Ti}}}$ =1.7 J·m−2,可以得到分离焓∆Hseg为47 kJ·mol−1(正数代表元素会在晶界处富集)。∆Hseg>∆Hmix>0,即W–Ti合金属于强偏聚体系,Ti元素向W晶界的偏聚能够显著降低材料的界面能,有效抑制晶粒长大[20]。图6为W75Ti25烧结样品的局部区域Ti元素线扫描分析。由图可知,Ti的偏析形成了富Ti和富W两个区域,在交界处Ti元素含量发生了明显的变化,富W相的中心区域Ti元素含量较低,富Ti区域有效减缓了W的扩散长大过程,达到了抑制晶粒长大的作用。
从制备方法上来看,高能球磨大大细化了初始粉末的粒度,为制备超细合金创造良好条件,并且放电等离子快速烧结技术集等离子活化和热压为一体,烧结温度低、烧结时间短,极大地缩短了样品在高温下的时间,在加速致密化的同时避免了高温下晶粒的快速长大,特别有利于制备超细甚至纳米材料。
3. 结论
(1)采用放电等离子烧结技术制备晶粒尺寸在亚微米级的钨钛合金,相对密度达95%以上,其中W75Ti25合金相对密度为(98.5±0.1)%,近乎全致密,W晶粒尺寸为(340±20)nm,硬度和抗压强度分别达HV(860±2)和(2600±10)MPa。
(2)钨钛合金由包含富Ti的β1(Ti,W)相和富W的β2(Ti,W)相的TixW1‒x固溶体构成,富W相基体相互连通,富Ti相分布其中,起到阻碍W晶粒长大作用。在W–Ti体系中,分离焓>混合焓>0,烧结过程中Ti元素会发生偏析,促进烧结致密化的同时大大降低界面能,再结合放电等离子快速烧结技术,能够达到进一步细化组织的效果。
-
表 1 与α相和β相的第j个衍射峰对应的归一化因子
Table 1 Normalization factor corresponding to the jth diffraction peak of α, β phases
相 编号,j 晶面指数 衍射峰角度 / (°) 归一化因子,R α 1 101 20.6 7.50 2 110 22.9 3.58 3 200 26.5 2.44 4 201 31.0 7.44 5 102 34.6 6.66 6 210 35.3 6.79 7 301 43.5 3.13 β 1 110 23.4 4.21 2 200 27.1 10.53 3 101 33.7 10.90 4 210 36.1 11.21 表 2 氮化温度与α-Si3N4质量分数关系
Table 2 Relationship between the nitriding temperature and α-Si3N4 mass fraction
氮化温度 / ℃ α-Si3N4质量分数 / % 1375 93.68 1400 95.02 1425 91.49 1450 85.43 表 3 升温速率与α-Si3N4质量分数关系
Table 3 Relationship between the heating rate and α-Si3N4 mass fraction
升温速率/ (℃·min−1) α-Si3N4质量分数 / % 3 88.58 4 91.20 5 95.02 6 90.98 10 89.26 表 4 球磨时间与α-Si3N4质量分数关系
Table 4 Relationship between the ball milling times and α-Si3N4 mass fraction
球磨时间 / h α-Si3N4质量分数 / % 0 74.09 4 91.73 8 95.02 16 89.35 表 5 稀释剂质量分数与α-Si3N4质量分数关系
Table 5 Relationship between the diluent mass fraction and α-Si3N4 mass fraction
稀释剂质量分数 / % α-Si3N4质量分数 / % 0 95.02 5 93.27 10 91.39 15 90.25 -
[1] 唐艳东, 马北越. 氮化硅陶瓷烧结致密化的研究进展. 耐火与石灰, 2021, 46(5): 35 Tang Y D, Ma B Y. Research progress on sintering densification of silicon nitride ceramic. Refract Lime, 2021, 46(5): 35
[2] 唐艳东, 马北越. 氮化硅微纳米粉制备的新进展. 耐火与石灰, 2021, 46(2): 9 Tang Y D, Ma B Y. Development on preparation of silicon nitride micro-nano powers. Refract Lime, 2021, 46(2): 9
[3] 陈波, 韦中华, 李镔, 等. 氮化硅陶瓷在四大领域的研究及应用进展. 硅酸盐通报, 2022, 41(4): 1404 DOI: 10.3969/j.issn.1001-1625.2022.4.gsytb202204035 Chen B, Wei Z H, Li B, et al. Research and application progress of silicon nitride ceramics in four major fields. Bull Chin Ceram Soc, 2022, 41(4): 1404 DOI: 10.3969/j.issn.1001-1625.2022.4.gsytb202204035
[4] Ma B Y, Tang Y D, Deng C J. Effects of Al2O3–Y2O3/Yb2O3 additives on microstructures and mechanical properties of silicon nitride ceramics prepared by hot-pressing sintering. Int J Appl Ceram Technol, 2022, 19(5): 2523
[5] 王月隆, 吴昊阳, 贾宝瑞, 等. 高导热氮化硅陶瓷用烧结助剂的研究进展. 粉末冶金技术, 2024, 42(1): 1 Wang Y L, Wu H Y, Jia B R, et al. Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics. Power Metall Technol, 2024, 42(1): 1
[6] Lee C E, Kim M J, Park Y J, et al. The effect of silicon particle size on the characteristics of porous sintered reaction bonded silicon nitride. Int J Refract Met Hard Mater, 2021, 101: 105647 DOI: 10.1016/j.ijrmhm.2021.105647
[7] Coe R F, Lumby R J, Pawson M F. Some properties and applications of hot-pressed silicon nitride // Special Ceramics 5. London, 1972: 361
[8] 田春艳. 起始粉末粒径对纳米氮化硅陶瓷抗热震性能的影响. 机械工程师, 2016(11): 49 Tian C Y. Effect of starting powder size on thermal shock resistance of nano-Si3N4 ceramics. Mech Eng, 2016(11): 49
[9] Jin X, Xing P F, Zhuang Y X, et al. Effect of Si3N4 diluent on direct nitridation of silicon powder. Ceram Int, 2019, 45(8): 10943 DOI: 10.1016/j.ceramint.2019.02.175
[10] 李飞, 崔巍, 田兆波, 等. 稀释剂种类对燃烧合成氮化硅粉体的影响. 材料导报, 2022, 36(10): 36 DOI: 10.11896/cldb.21030087 Li F, Cui W, Tian Z B, et al. The effect of diluent type on silicon nitride powers by combustion synthesis. Mater Rep, 2022, 36(10): 36 DOI: 10.11896/cldb.21030087
[11] 陈宏, 穆柏春, 李辉, 等. 碳热还原氮化制备氮化硅粉体反应条件研究. 粉末冶金技术, 2010, 28(1): 43 Cheng H, Mu B C, Li H, et al. Study of preparation conditions of Si3N4 powers by carbothermal reduction. Power Metall Technol, 2010, 28(1): 43
[12] Li B, Feng Y Y, Li G Q, et al. Preparation of high-purity alpha-Si3N4 nano-powder by precursor-carbothermal reduction and nitridation. Ceram Int, 2019, 45(5): 6335 DOI: 10.1016/j.ceramint.2018.12.118
[13] Zhao Y J, Dong S, Hu P T, et al. Recent progress in synthesis, growth mechanisms, properties, and applications of silicon nitride nanowires. Ceram Int, 2021, 47(11): 14944 DOI: 10.1016/j.ceramint.2021.02.139
[14] 陈宏, 穆柏春, 赵连俊. 溶胶凝胶–碳热还原法制备Si3N4纳米粉末. 粉末冶金技术, 2009, 27(2): 114 Chen H, Mu B C, Zhao L J. Preparation of Si3N4 nanometer powders by sol-gel method and carbothermal reduction method. Power Metall Technol, 2009, 27(2): 114
[15] Pruiti N G, Klitis C, Gough C, et al. Thermo-optic coefficient of PECVD silicon-rich silicon nitride. Opt Lett, 2020, 45(22): 6242 DOI: 10.1364/OL.403357
[16] 骆俊廷, 张凯锋, 王国峰, 等. 液相烧结非晶纳米氮化硅陶瓷粉体结晶与相变行为研究. 粉末冶金技术, 2004, 22(4): 214 DOI: 10.3321/j.issn:1001-3784.2004.04.005 Luo J T, Zhang K F, Wang G F, et al. Crystallization and phase changing of amorphous silicon nitride nanopowders by liquid phase sintering. Power Metall Technol, 2004, 22(4): 214 DOI: 10.3321/j.issn:1001-3784.2004.04.005
[17] You D M, Liu W H, Jiang Y, et al. Effect of ion assistance on silicon nitride films deposited by reactive magnetron sputtering. Mater Sci Semiconductor Process, 2023, 157: 107312 DOI: 10.1016/j.mssp.2023.107312
[18] 中华人民共和国工业和信息化部. JC/T 2342—2015氮化硅材料相含量分析方法. 北京: 中国建设科技出版社, 2016 Ministry of Industry and Information Technology, People’s Republic of China. JC/T 2342—2015 Method for the Quantitative Phase Analysis of Silicon Nitride. Beijing: China Construction Science and Technology Press, 2016
[19] 段生朝, 麻建军, 郭汉杰, 等. 硅粉直接氮化反应热力学分析及动力学机理研究. 有色金属科学与工程, 2016, 7(4): 14 Duan S C, Ma J J, Guo H J, et al. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction. Nonferrous Met Sci Eng, 2016, 7(4): 14
[20] Messier D R, Riley F L, Brook R J. The α/β silicon nitride phase transformation. J Mater Sci, 1978, 13: 1199 DOI: 10.1007/BF00544725
-
期刊类型引用(6)
1. 尹怡,秦思贵,史英丽,于宏新,徐世伟. 面向等离子体钨基材料热负荷损伤研究进展. 粉末冶金技术. 2024(03): 242-254 . 本站查看
2. 王娜,武洲,朱琦,席莎,张晓,周莎,李晶,王宇晴. 放电等离子烧结制备钼镍合金. 粉末冶金技术. 2024(04): 361-366 . 本站查看
3. 罗来马,颜硕,刘祯,昝祥,吴玉程. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势. 粉末冶金技术. 2023(01): 12-29 . 本站查看
4. 张小艳,罗铁钢,刘胜林,郑雪萍,王峰,马学琴,党岳辉. 稀土Yb、Ce对钛铝合金高温抗氧化性能的影响. 粉末冶金技术. 2023(03): 218-224 . 本站查看
5. 吴小俊. 发动机用石墨烯增强TC11合金放电等离子烧结制备参数优化及力学性能研究. 粉末冶金技术. 2022(04): 291-295 . 本站查看
6. 杨亚飞,姚草根,吕宏军,李启军,崔子振. 磁控溅射用W-Ti合金靶材的研究进展. 宇航材料工艺. 2021(06): 10-16 . 百度学术
其他类型引用(2)