-
摘要:
采用涂覆法在TZC钼合金表面制备了三种不同涂层A涂层、B涂层、C涂层。A涂层含有硼硅酸盐玻璃,B涂层在A涂层的基础上掺杂质量分数为15%的MoSi2粉,C涂层在B涂层的基础上添加少量的Al粉。使用加热炉、X射线衍射分析仪及扫描电镜等研究了涂层在
1200 ℃的氧化行为。结果表明,C涂层在高温氧化1 h内具有良好的保护能力,在氧化2 h的抗氧化性能较无涂层保护的情况下提高69%。在高温氧化后,A涂层及B涂层的截面形貌主要以MoO3和TiO2交替分布的疏松的组织为主。而铝粉的添加改变了氧化膜的物相组成,C涂层形成外层铝硅酸盐,中层铈钛氧化物,内层TiO2和钼硅化合物的三层结构,使其具有优良的抗氧化效果。Abstract:Three different coatings A, B and C were prepared on TZC molybdenum alloy surface by coating method. The A coating contains borosilicate glass, the B coating dopes MoSi2 powder with A mass fraction of 15% on the basis of the A coating, and the C coating adds a small amount of Al powder on the basis of the B coating. The oxidation behavior of the coatings at
1200 ℃ was studied by heating furnace, X-ray diffraction analyzer and scanning electron microscope. The results show that the C coating has a good protection performance within 1 h of high temperature oxidation, and the oxidation resistance of the C coating after 2 hours is 69% higher than that without coating protection. After high temperature oxidation, the cross-section morphology of A coating and B coating is dominated by the loose structure of MoO3 and TiO2 alternately distributed. The addition of aluminum powder changes the phase composition of the oxide film, and the C coating forms a three-layer structure of the outer aluminosilicate, the middle cerium titanium oxide, the inner TiO2 and molybdenum silicon compound, which makes it have excellent oxidation resistance.-
Keywords:
- molybdenum-base alloy /
- TZC /
- anti-oxidation /
- coating /
- silicide
-
-
图 5 A试样涂层
1200 ℃下表面氧化形貌:(a)0.5 h;(b)1 h;(c)2 h;(d)4 h;(e)8 h;成分分析:(f)图(b)中①点处;(g)图(c)中②点处;图(d)中方框区域的面扫图:(h)Mo;(i)O;(j)SiFigure 5. Surface oxidation morphology of coating of sample A at
1200 ℃: (a) 0.5 h; (b) 1 h; (c) 2 h; (d) 4 h; (e) 8 h; component analysis: (f) point ① in Fig.(b); (g) point ② in Fig.(c); surface scan results of the box area in Fig.(d): (h) Mo; (i) O; (j) Si图 8 试样氧化2 h后截面形貌及元素线扫描:(a)A3截面;(b)B3截面;(c)C3截面;(d)图(a)线Ⅰ处元素分布;(e)图(b)线Ⅱ处元素分布;(f)图(c)线Ⅲ处元素分布
Figure 8. Cross-section morphology and element line scanning of the samples after 2 h oxidation: (a) A3 cross-section; (b) B3 cross-section; (c) C3 cross-section; (d) element distribution at line Ⅰ in Fig.(a); (e) element distribution at line Ⅱ in Fig.(b); (f) element distribution at line Ⅲ in Fig.(c)
表 1 TZC合金主要化学成分(质量分数)
Table 1 Main chemical components of TZC alloy
% C Si Zr Ti Ce Fe Mo 0.09 0.01 0.40 1.30 0.80 ≤0.01 余量 -
[1] 付静波, 曹维成, 杨秦莉, 等. 等温锻造模具用TZM合金高温力学性能研究. 中国钼业, 2017, 41(1): 31 Fu J B, Cao W C, Yang Q L, et al. Research on the high-temperatures mechanical behavior of TZM alloy prepared for isothermal forging die. China Molybd Ind, 2017, 41(1): 31
[2] 张利军, 常辉, 薛祥义. 等温锻造技术及其在航空工业中的应用. 热加工工艺, 2010, 39(21): 21 DOI: 10.3969/j.issn.1001-3814.2010.21.006 Zhang L J, Chang H, Xue X Y. Isothermal forging technology and its application in aviation industry. Hot Work Technol, 2010, 39(21): 21 DOI: 10.3969/j.issn.1001-3814.2010.21.006
[3] 李青, 韩雅芳, 肖程波, 等. 等温锻造用模具材料的国内外研究发展状况. 材料导报, 2004, 18(4): 9 DOI: 10.3321/j.issn:1005-023X.2004.04.003 Li Q, Han Y F, Xiao C B, et al. R&D status of die materials for iso-thermal forging at high temperature. Mater Rev, 2004, 18(4): 9 DOI: 10.3321/j.issn:1005-023X.2004.04.003
[4] 吕忠. 钼在工模具方面的应用. 钼业经济技术, 1987, 11(2): 33 Lv Z. Molybdenum in the application of tool and mould. Molybd Ind Econ Technol, 1987, 11(2): 33
[5] Lang D, Pöhl C, Holec D, et al. On the chemistry of the carbides in a molybdenum base Mo–Hf–C alloy produced by powder metallurgy. J Alloys Compd, 2016, 654: 445 DOI: 10.1016/j.jallcom.2015.09.126
[6] Tang Z, Thom A J, Kramer M J, et al. Characterization and oxidation behavior of silicide coating on multiphase Mo–Si–B alloy. Intermetallics, 2008, 16(9): 1125 DOI: 10.1016/j.intermet.2008.06.014
[7] Das J, Mitra R, Roy S K. Effect of Ce addition on the oxidation behaviour of Mo–Si–B–Al ultrafine composites at 1100 ℃. Scr Mater, 2011, 64(6): 486 DOI: 10.1016/j.scriptamat.2010.11.022
[8] Azimovna Azim M, Burk S, Gorr B, et al. Effect of Ti (Macro-) alloying on the high-temperature oxidation behavior of ternary Mo–Si–B Alloys at 820–1, 300 ℃. Oxid Met, 2013, 80(3-4): 231 DOI: 10.1007/s11085-013-9375-1
[9] Li R, Li B, Chen X, et al. Variation of phase composition of Mo–Si–B alloys induced by boron and their mechanical properties and oxidation resistance. Mater Sci Eng A, 2019, 749: 196 DOI: 10.1016/j.msea.2019.02.008
[10] Zhang Y, Li Y, Bai C. Microstructure and oxidation behavior of Si–MoSi2 functionally graded coating on Mo substrate. Ceram Int, 2017, 43(8): 6250 DOI: 10.1016/j.ceramint.2017.02.024
[11] Downs I P, Perepezko J H, Sakidja R, et al. Suppressing CMAS attack with a MoSiB-based coating. Surf Coat Technol, 2014, 239: 138 DOI: 10.1016/j.surfcoat.2013.11.032
[12] Alam Md Z, Venkataraman B, Sarma B, et al. MoSi2 coating on Mo substrate for short-term oxidation protection in air. J Alloys Compd, 2009, 487(1-2): 335 DOI: 10.1016/j.jallcom.2009.07.141
[13] Suzuki R O, Ishikawa M, Ono K. MoSi2 coating on molybdenum using molten salt. J Alloys Compd, 2000, 306(1): 285
[14] Chakraborty S P, Banerjee S, Sharma I G, et al. Development of silicide coating over molybdenum based refractory alloy and its characterization. J Nucl Mater, 2010, 403(1): 152
[15] Su L F, Lu-Steffes O, Zhang H, et al. An ultra-high temperature Mo–Si–B based coating for oxidation protection of NbSS/Nb5Si3 composites. Appl Surf Sci, 2015, 337: 38 DOI: 10.1016/j.apsusc.2015.02.061
[16] Yoon J K, Kim G H, Han J H, et al. Low-temperature cyclic oxidation behavior of MoSi2/Si3N4 nanocomposite coating formed on Mo substrate at 773 K. Surf Coat Technol, 2005, 200(7): 2537 DOI: 10.1016/j.surfcoat.2005.01.035
[17] Zhu Y T, Stan M, Conzone S D, et al. Thermal oxidation kinetics of MoSi2-based powders. J Am Ceram Soc, 1999, 82(10): 2785 DOI: 10.1111/j.1151-2916.1999.tb02156.x
[18] Zhang C, Feng H, Zheng Z, et al. Preparation and corrosion behavior of the Al-modified MoSi2/Al2O3 coating on the surface of molybdenum metal core. Corros Sci, 2021, 193: 109879 DOI: 10.1016/j.corsci.2021.109879
[19] Majumdar S, Sharma I G. Oxidation behavior of MoSi2 and Mo(Si, Al)2 coated Mo–0.5Ti–0.1Zr–0.02C alloy. Intermetallics, 2011, 19(4): 541
[20] Zhang P, Guo X, Zhang C, et al. Deposition and oxidation behavior of Mo(Si, Al)2/MoB layered coatings on TZM alloy. Int J Refract Met H, 2017, 67: 32 DOI: 10.1016/j.ijrmhm.2017.04.008
[21] Paswan S, Mitra R, Roy S K. Oxidation behaviour of the Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 700–1300 °C. Intermetallics, 2007, 15(9): 1217 DOI: 10.1016/j.intermet.2007.02.012
[22] Ingemarsson L, Halvarsson M, Engkvist J, et al. Oxidation behavior of a Mo(Si, Al)2-based composite at 300–1000 ℃. Intermetallics, 2010, 18(4): 633 DOI: 10.1016/j.intermet.2009.10.019
[23] Ingemarsson L, Hellström K, Johansson L G, et al. Oxidation behaviour of a Mo(Si, Al)2 based composite at 1500 ℃. Intermetallics, 2011, 19(9): 1319 DOI: 10.1016/j.intermet.2011.05.002
[24] Liu Y, Shao W, Wang C, et al. Microstructure and oxidation behavior of Mo–Si–Al coating on Nb-based alloy. J Alloys Compd, 2018, 735: 2247 DOI: 10.1016/j.jallcom.2017.11.339
[25] Deng X, Zhang G, Wang T, et al. Characterization and oxidation resistance of B-modified Mo3Si coating on Mo substrate. J Alloys Compd, 2019, 807: 151693 DOI: 10.1016/j.jallcom.2019.151693
[26] Akinc M, Meyer M K, Kramer M J, et al. Boron-doped molybdenum silicides for structural applications. Mater Sci Eng A, 1999, 261(1-2): 16 DOI: 10.1016/S0921-5093(98)01045-4
[27] Meyer M, Kramer M, Akinc M. Boron-doped molybdenum silicides. Adv Mater, 1996, 8(1): 85 DOI: 10.1002/adma.19960080118
[28] Meyer M K, Thom A J, Akinc M. Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000 ℃. Intermetallics, 1999, 7(2): 153 DOI: 10.1016/S0966-9795(98)00058-2
-
期刊类型引用(0)
其他类型引用(3)