高级检索

新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响

张皓, 田高峰, 陈阳, 王志彪, 姜嘉赢

张皓, 田高峰, 陈阳, 王志彪, 姜嘉赢. 新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响[J]. 粉末冶金技术, 2023, 41(5): 385-392, 401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070004
引用本文: 张皓, 田高峰, 陈阳, 王志彪, 姜嘉赢. 新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响[J]. 粉末冶金技术, 2023, 41(5): 385-392, 401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070004
ZHANG Hao, TIAN Gaofeng, CHEN Yang, WANG Zhibiao, JIANG Jiaying. Effect of microstructure evolution on tensile properties of novel nickel-based powder metallurgy superalloys during long-term aging[J]. Powder Metallurgy Technology, 2023, 41(5): 385-392, 401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070004
Citation: ZHANG Hao, TIAN Gaofeng, CHEN Yang, WANG Zhibiao, JIANG Jiaying. Effect of microstructure evolution on tensile properties of novel nickel-based powder metallurgy superalloys during long-term aging[J]. Powder Metallurgy Technology, 2023, 41(5): 385-392, 401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070004

新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响

详细信息
    通讯作者:

    田高峰: E-mail: gftian2008@163.com

  • 中图分类号: TG113.2

Effect of microstructure evolution on tensile properties of novel nickel-based powder metallurgy superalloys during long-term aging

More Information
  • 摘要:

    研究了新型镍基粉末高温合金在800 ℃时效100~5000 h后显微组织对拉伸性能的影响。结果表明:随着时效时间的增加,合金的晶粒尺寸未发生明显变化,晶界粗化并呈现为不连续“锯齿状”;二次γ′相发生合并粗化,粗化符合LSW理论;TCP相的析出量随时效时间的增加而增大,1000 h后在晶界处呈现细小白条状析出,2000 h后在晶内呈现大量长条形针状析出,5000 h时TCP相含量达到最大;受二次γ′相粗化的影响,合金的700 ℃拉伸强度和塑性随时效时间的增加而逐渐降低;拉伸断口具有颈缩和韧窝特征,断裂均为韧窝断裂。

    Abstract:

    The influence of microstructure evolution on the tensile properties of the novel nickel-based powder metallurgy superalloys after long-term aging at 800 ℃ for 100~5000 h was studied. The results show that the grain size of the alloys does not change significantly with the increase of aging time, and the grain boundaries are coarsened and appear the discontinuous “sawtooth”. Secondary γ′ phase particles obviously coarsen which conforms to the LSW theory. The content of TCP phases precipitated increases with the increase of aging time. After aging for 1000 h, the intermittent long white precipitates are observed at the grain boundary. After aging for 2000 h, a large number of elongate needle-like precipitates appear in the grain. The content of TCP phases reaches the maximum after aging for 5000 h. Due to the coarsening of the secondary γ′ phase, the tensile strength and plasticity of the alloys at 700 ℃ gradually decrease with increasing the aging time. The tensile fracture has the characteristics of necking and dimple, and the fracture shows the dimple fracture.

  • 稀有金属钼(Mo)是重要的高熔点金属,其熔点为2610 ℃,仅次于碳、钨、铼、钽和锇。金属Mo呈银白色,外形近似钢铁,具有高的硬度和弹性模量,低的蒸气压和蒸发速度,低的线膨胀系数,高的抗腐蚀能力等一系列优异特性,在现代国防、原子能工业、电真空、电光源等工程应用领域占有重要地位,在一些特殊高温应用领域甚至具有不可取代的作用[14]

    研究表明,在金属Mo基体中引入稀土氧化物粒子(可称作“稀土氧化物–Mo基材料”)可进一步提高材料的性能,拓展材料的应用。例如,通过引入氧化镧(La2O3)、氧化钇(Y2O3)等粒子对材料弥散强化,不仅可以大大提高金属Mo的室温强度和硬度,而且可以提高材料的再结晶温度,增强高温力学性能,显著延长作为高温发热体材料的使用寿命[58]。此外,在金属Mo基体中引入氧化钪(Sc2O3)、Y2O3等稀土氧化物粒子还可以提高材料的电子发射能力,用作优秀的阴极材料[9]

    作为改善金属Mo性能的稀土氧化物粒子,其尺寸大小及在Mo基体中的分布直接影响所制材料的性能。通常认为,粒子越细小,在Mo基体中分布越均匀,越有利于材料性能的提高[412],因此,设法获得粒度细小的稀土氧化物粒子、并使其均匀分布在基体中,是制备高性能稀土氧化物–Mo基材料的基础。由于熔点较高,目前难熔金属主要采用粉末冶金方法制备,而在粉末冶金工艺中,原料粉末是决定材料性能和制造成本的关键一环,要获得高性能的稀土氧化物–Mo基材料,需要首先制备出高纯度、细粒度、稀土氧化物粒子细小且掺杂分布均匀的Mo基粉末原料。与传统制备稀土氧化物–Mo基粉末的机械合金化法相比,溶液燃烧法具有掺杂少、合成效率高、能耗低等优点。特别是溶液燃烧法的合成原料均为水溶性物质,目标金属在水溶液中以离子形态存在,能够很容易实现各组分在原子或分子水平上的均匀分散和混合,这为最终得到Mo基材料中稀土氧化物弥散相的粒径细化和均匀分布提供了有利条件。

    为了增加溶液燃烧合成法的应用范围,同时为La2O3掺杂Mo合金的制备提供新思路,本文以七钼氨酸((NH4)6Mo7O24·4H2O)作为金属源,甘氨酸(C2H5O2N)为燃料,硝酸铵(NH4NO3)为氧化剂,采用溶液燃烧法合成不同质量分数La2O3掺杂的Mo前驱体粉末,并对前驱体粉末进行还原、烧结,研究La2O3掺杂量(质量分数)对粉体性能及对烧结后Mo合金各项性能的影响。

    以高可溶性的七钼氨酸((NH4)6Mo7O24·4H2O)为金属源,硝酸铵(NH4NO3)(≥99.0%)为氧化剂,甘氨酸(C2H5O2N)为燃料及添加剂,添加不同质量分数La(NO3)3·6H2O(以La2O3含量占最终合金粉末质量的比例为计算标准,分别为0、0.3%、0.7%、1.0%),通过溶液燃烧反应合成前驱体。在700 ℃下氢气氛围中还原,制备出La2O3掺杂Mo粉。对制备的粉末进行放电等离子体烧结(spark plasma sintering,SPS),烧结温度1600 ℃。

    采用X射线衍射仪(X-ray diffraction,XRD;PANalytical X-Pert PRO MPD)对未添加La2O3的氧化钼前驱体及Mo–La2O3前驱体的物相组成进行表征。采用场发射扫描电子显微镜(field emission scanning electron microscope,FESEM;Hitachi SU8020)和透射电子显微镜(transmission electron microscope,TEM)对产物的显微组织进行观察。采用能谱仪(energy disperse spectroscope,EDS)对试样中Mo和La的元素分布进行测定。

    图1为不同La2O3掺杂量的前驱体粉末微观形貌,可以清楚地发现,当不掺杂La2O3时,获得的前躯体粉末为片状结构,厚度为200 nm,片的尺寸约为0.5~2.0 μm。随着La2O3掺杂量的增加,其形貌开始变为细长颗粒状,且颗粒尺寸逐渐变小。当La2O3掺杂含量达到1.0%(质量分数)时,粉末晶粒尺寸以小于200 nm为主,且出现严重团聚现象。

    图  1  La2O3掺杂量对前驱体粉末显微形貌的影响:(a)0;(b)0.3%;(c)0.7%;(d)1.0%
    Figure  1.  Effect of La2O3 doping content (mass fraction) on the microstructure of the precursor powders: (a) 0; (b) 0.3%; (c) 0.7%; (d) 1.0%

    对不同La2O3掺杂量的前驱体粉末在700 ℃下进行还原,图2为还原产物扫描电子显微形貌。由图可以看出,制备出的La2O3掺杂Mo粉尺寸在纳米级别,随着La2O3添加量的增加,Mo粉的晶粒尺寸逐渐减小,其中掺杂质量分数为0、0.3%、0.7%和1.0%La2O3的Mo粉晶粒尺寸分别为220、180、150以及100 nm,这是由于添加La2O3抑制了Mo晶粒长大。另外,由于纳米粉末尤其是难熔金属的纳米粉末的表面积非常大,为了降低体系能量,还原后的粉末颗粒自发的聚集在一起,从而出现了不均匀的团聚现象。

    图  2  掺杂不同质量分数La2O3的Mo粉700 ℃还原产物显微形貌:(a)0;(b)0.3%;(c)0.7%;(d)1.0%
    Figure  2.  SEM images of the reduction products of the Mo powders doped by La2O3 in different mass fraction: (a) 0; (b) 0.3%; (c) 0.7%; (d) 1.0%

    图3为掺杂不同质量分数La2O3的Mo粉在700 ℃还原产物的X射线衍射图谱,由图可知,氧化钼前驱体均被还原成了Mo粉,这说明通过溶液燃烧法可以获得高纯度的La2O3掺杂Mo粉。此外,虽然在Mo粉中掺杂了不同含量的La2O3第二相粒子,但是在图中并未发现La的峰,可能是加入的La2O3所占比例非常小,在X射线衍射检测中未能发现。为了验证La2O3粒子的掺杂,实验对还原后的粉末进行了能谱分析,结果如图4所示,在掺杂质量分数为1.0%La2O3的Mo粉中发现了La特征峰,证明了La元素的存在。

    图  3  掺杂不同质量分数La2O3的Mo粉700 ℃还原产物X射线衍射图谱
    Figure  3.  XRD patterns of the Mo powders doped by La2O3 in different mass fraction after reduction at 700 ℃
    图  4  掺杂质量分数1.0%La2O3的Mo粉在700 ℃还原产物的扫描电子显微形貌(a)和对应的能谱分析(b)
    Figure  4.  SEM image (a) and the corresponding EDS analysis (b) of the Mo powders doped by 1.0%La2O3 after reduction at 700 ℃

    对还原后的粉末做进一步分析,通过透射电子显微镜对掺杂质量分数0.7%La2O3的Mo粉进行表征,结果见图5。从图中可以清楚地观察到,还原后的粉末粒径大约为150~200 nm,而且分散性较好。这主要是因为溶液燃烧法在反应过程中产生的前驱体晶粒细小,团聚体中存在大量的孔隙(如图1所示),因此在较低温度还原后,合金粉末的晶粒能够保持在纳米尺寸且分散性较好[13]

    图  5  Mo–0.7La2O3前驱体粉末透射电子显微镜照片:(a)低倍;(b)高倍
    Figure  5.  TEM images of the Mo–0.7La2O3 precursor powders: (a) low magnification; (b) high magnification

    图6为经1600 ℃烧结后La2O3掺杂Mo合金的断口形貌。和纯Mo相比,La2O3掺杂Mo合金材料的晶粒更为细小,并且随La2O3质量分数的提高,细化作用逐渐明显。可以看出,在La2O3质量分数为0.7%时,Mo晶粒尺寸为500 nm左右,继续增加La2O3质量分数至1.0%,其晶粒尺寸降至300 nm。随着La2O3掺杂量的增加,Mo–La2O3烧结体中空隙数量增加,La2O3质量分数为1.0%时,其断口形貌中孔隙数量最多。

    图  6  经1600 ℃烧结后不同质量分数La2O3掺杂Mo合金的断口形貌:(a)0;(b)0.3%;(c)0.7%;(d)1.0%
    Figure  6.  Fracture morphology of the Mo alloys doped by La2O3 in different mass fraction sintered at 1600 ℃: (a) 0; (b) 0.3%; (c) 0.7%; (d) 1.0%

    图7所示为不同La2O3掺杂量对Mo–La2O3合金相对密度的影响。可以明显看出,随着La2O3质量分数的提高,Mo合金的相对密度逐渐减小。这一方面是因为La2O3的实际密度低于纯Mo,随着掺杂量的提高,其相对密度必然会下降;另一方面,La2O3的加入会阻碍晶粒与烧结颈长大,同时阻碍晶界的迁移,使得材料的致密化行为变得困难,降低其相对密度[14]。这也与图6(d)中大量空隙相对应。

    图  7  1600 ℃烧结Mo–La2O3合金相对密度随La2O3质量分数变化
    Figure  7.  Relative density of the Mo–La2O3 alloys doped by La2O3 in different mass fraction sintered at 1600 ℃

    图8所示为Mo–La2O3合金材料的显微硬度随着La2O3掺杂量的变化。从图中可以看出,合金材料的显微硬度呈现先增加后减小的趋势,在La2O3质量分数为0.7%时,显微硬度达到最高,为HV0.2546。这是由于La2O3的加入会阻碍晶粒生长,细化晶粒,提高材料的力学性能[15]。同时,第二相粒子La2O3可以起到钉扎作用,阻碍位错的迁移,使得材料硬度提高。但是,当La2O3掺杂量过多时,样品密度降低,孔隙数量增加,从而引起硬度降低[1516]。因此当La2O3掺杂量超过0.7%时,硬度值又出现下降的趋势。

    图  8  1600 ℃烧结Mo–La2O3合金显微硬度随La2O3质量分数变化
    Figure  8.  Microhardness of the Mo–La2O3 alloys doped by La2O3 in different mass fraction sintered at 1600 ℃

    (1)将溶液燃烧法应用于纳米稀土氧化物掺杂Mo基材料的制备,成功制备出La2O3掺杂Mo合金粉,并经烧结获得合金样品,所制备合金样品具有优异的力学性能。

    (2)随着La2O3掺杂量(质量分数)的增加,溶液燃烧合成制备的前驱体粉末逐渐由片状大颗粒变成细小的不规则颗粒。在掺杂量为1.0%时,前驱体粉末晶粒尺寸在200 nm左右。经还原后得到的Mo–La2O3粉末晶粒尺寸随着La2O3掺杂量的增加而减小,在掺杂量为1.0%时,晶粒尺寸为100 nm左右。

    (3)所制得的La2O3掺杂Mo粉经1600 ℃烧结后产物相对密度在均在95%以上,随着La2O3掺杂量的增加(La2O3质量分数在0~1.0%范围内),相对密度逐渐降低,而显微硬度呈现先上升后下降的趋势。在La2O3掺杂量为0.7%时,Mo–La2O3合金显微硬度呈现出最大值,此时晶粒尺寸为500 nm左右,显微硬度达到HV0.2564。

  • 图  1   标准热处理后合金显微组织:(a)、(b)金相显微镜;(c)、(d)扫描电镜

    Figure  1.   Microstructure of the alloys after the standard heat treatment: (a), (b) OM; (c), (d) SEM

    图  2   800 ℃长期时效合金晶粒显微组织:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)、(f)5000 h

    Figure  2.   Grain structure of the alloys aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e), (f) 5000 h

    图  3   800 ℃长期时效合金γ′相显微形貌:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)5000 h

    Figure  3.   SEM images of the γ′ phases aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e) 5000 h

    图  4   800 ℃长期时效合金的二次γ′相平均半径与失效时间关系曲线

    Figure  4.   Relationship between the secondary γ′ phase size of the alloys and aging time at 800 ℃

    图  5   800 ℃长期时效合金TCP相形貌:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)5000 h

    Figure  5.   BSE images of the TCP phases aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e) 5000 h

    图  6   800 ℃长期时效合金拉伸性能

    Figure  6.   Tensile properties of the alloys aged at 800 ℃ for different times

    图  7   800 ℃长期时效合金拉伸断口整体形貌:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)5000 h

    Figure  7.   Tensile fractures SEM images of the alloys aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e) 5000 h

    图  8   800 ℃长期时效5000 h下合金拉伸断口形貌:(a)断口局部;(b)裂纹萌生;(c)裂纹扩展;(d)裂纹断裂

    Figure  8.   Tensile fractures SEM images of the alloys aged at 800 ℃ for 5000 h: (a) local morphology of tensile fracture; (b) crack initiation region; (c) crack propagation region; (d) rapidly fracture region

    表  1   镍基粉末高温合金化学成分(质量分数)

    Table  1   Chemical composition of the nickel-based powder metallurgy superalloys %

    CrCoMoTaWAlNbTiCBZrNi
    11.0~13.019.0~22.03.5~6.02.4~4.02.1~2.53.0~5.00.5~1.03.0~4.50.050.030.05余量
    下载: 导出CSV

    表  2   800 ℃长期时效合金晶粒尺寸

    Table  2   Grain size of the alloys aged at 800 ℃ for different times

    时效时间 / h晶粒尺寸 / μm标准差
    10013.806.78
    50014.486.27
    100014.978.34
    200012.976.46
    500014.787.22
    下载: 导出CSV

    表  3   800 ℃长期时效合金二次γ′相平均尺寸

    Table  3   Size of the secondary γ′ phases aged at 800 ℃ for different times

    时效时间 / h二次γ′相平均尺寸(半径) / nm
    10071.4
    50071.4
    100085.6
    2000110.0
    5000132.3
    下载: 导出CSV

    表  4   800 ℃长期时效合金TCP相含量

    Table  4   Content of the TCP phases aged at 800 ℃ for different times

    时效时间 / hTCP相面积分数 / %
    100
    500
    10000.392
    20002.430
    50002.667
    下载: 导出CSV
  • [1] Gessinger G H. 粉末高温合金. 张义文, 译. 北京: 冶金工业出版社, 2017

    Gessinger G H. Powder Metallurgy of Superalloys. Zhang Y W, Transl. Beijing: Metallurgical Industry Press, 2017

    [2]

    Reed R C. The Superalloys Fundamentals and Applications. Cambridg: Cambridge University Press, 2006

    [3] 李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术. 北京: 国防工业出版社, 2012

    Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology. Beijing: National Defense Industry Press, 2012

    [4] 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engines. Acta Metall Sin, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    [5] 侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131

    Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131

    [6] 贾建, 陶宇, 张义文, 等. 第三代粉末冶金高温合金René104的研究进展. 粉末冶金工业, 2007, 17(3): 36 DOI: 10.3969/j.issn.1006-6543.2007.03.008

    Jia J, Tao Y, Zhang Y W, et al. Recent development of third generation P/M superalloy René104. Powder Metall Ind, 2007, 17(3): 36 DOI: 10.3969/j.issn.1006-6543.2007.03.008

    [7]

    Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3. NASA/TM-2002-211796. Washington D C, 2002

    [8]

    Yang L B, Ren X N, Ge C C, et al. Status and development of powder metallurgy nickel-based disk superalloys. Int J Mater Res, 2019, 110(10): 901 DOI: 10.3139/146.111820

    [9]

    Gabb T P, Gayda J, Telesman J, et al. Realistic subscale evaluations of the mechanical properties of advanced disk superalloys. NASA/TM-2003-212086. Washington D C, 2003

    [10]

    Bakradze M M, Ovsepyan S V, Buiakina A A, et al. Development of Ni-base superalloy with operating temperature up to 800 ℃ for gas turbine disks. Inorg Mater Appl Res, 2019, 9(6): 1044

    [11] 程茜, 董建新, 张麦仓. 三代粉末高温合金的特征及发展. 世界钢铁, 2011, 11(5): 43 DOI: 10.3969/j.issn.1672-9587.2011.05.008

    Cheng C, Dong J X, Zhang M C. Characteristics and development of three generations of powder metallurgy superalloys. World Iron Steel, 2011, 11(5): 43 DOI: 10.3969/j.issn.1672-9587.2011.05.008

    [12] 田高峰, 汪煜, 杨杰, 等. Ni基粉末冶金高温合金平衡析出相的热力学研究. 粉末冶金技术, 2012, 30(4): 243 DOI: 10.3969/j.issn.1001-3784.2012.04.001

    Tian G F, Wang Y, Yang J, et al. Thermodynamic calculation of equilibrium precipitated phases in P/M nickel-base superalloy. Powder Metall Technol, 2012, 30(4): 243 DOI: 10.3969/j.issn.1001-3784.2012.04.001

    [13] 陈阳, 田高峰, 杨杰, 等. 变形参数对挤压成型镍基粉末高温合金固溶热处理晶粒组织的影响. 航空材料学报, 2019, 39(4): 19 DOI: 10.11868/j.issn.1005-5053.2019.000049

    Chen Y, Tian G F, Yang J, et al. Effect of deformation parameter on solution heat-treated microstructure of extruded Ni-based powder metallurgy superalloy. J Aeron Mater, 2019, 39(4): 19 DOI: 10.11868/j.issn.1005-5053.2019.000049

    [14] 张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387

    Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387

    [15]

    Yang G H, Tian G F, Zhang X L, et al. Effect of long-term aging on microstructure stability of a novel nickel base powder superalloy. J Alloys Compd, 2022, 906: 164297 DOI: 10.1016/j.jallcom.2022.164297

    [16]

    Huang Y S, Wang X G, Cui C Y, et al. The effect of coarsening of γ′ precipitate on creep properties of Ni-based single crystal superalloys during long-term aging. Mater Sci Eng A, 2020, 773: 138886 DOI: 10.1016/j.msea.2019.138886

    [17] 肖璇, 周兰章, 郭建亭. 镍基高温合金U720Li的组织稳定性及蠕变行为. 金属学报, 2001, 37(11): 1159 DOI: 10.3321/j.issn:0412-1961.2001.11.006

    Xiao X, Zhou L Z, Guo J T. Microstructural stability and creep behavior of nickel base superalloy U720Li. Acta Metall Sin, 2001, 37(11): 1159 DOI: 10.3321/j.issn:0412-1961.2001.11.006

    [18]

    Picasso A, Somoza A, Tolley A. Nucleation, growth and coarsening of γ′-precipitates in a Ni–Cr–Al-based commercial superalloy during artificial aging. J Alloys Compd, 2009, 479(1-2): 129 DOI: 10.1016/j.jallcom.2008.12.068

    [19]

    Mehdizadeh M, Hassan F. Effects of different elevated temperature and long-term exposure on microstructural evolution and mechanical characteristics of IN617 Ni-based superalloy. Mater Sci Eng A, 2022, 841: 143025 DOI: 10.1016/j.msea.2022.143025

    [20] 王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142 DOI: 10.3969/j.issn.1001-3784.2017.02.011

    Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142 DOI: 10.3969/j.issn.1001-3784.2017.02.011

    [21]

    Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy DOE: chemistry, properties, phase formations and thermal stability // Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys. Hoboken, 2016: 189

    [22]

    Wang J, Zhou L Z, Sheng L Y, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure. Mater Des, 2012, 39: 55 DOI: 10.1016/j.matdes.2012.02.020

    [23]

    Tan L M, Zhang Y W, Jia J, et al. Precipitation of μ phase in nickel-based powder metallurgy superalloy FGH97. J Iron Steel Res, 2016, 23(8): 851 DOI: 10.1016/S1006-706X(16)30130-3

    [24]

    Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater, 2001, 49(19): 4113 DOI: 10.1016/S1359-6454(01)00265-8

    [25]

    Wu K, Liu G Q, Hu B F, et al. Alloy design of a new type high-performance P/M turbine disk superalloy. Procedia Eng, 2012, 27: 939 DOI: 10.1016/j.proeng.2011.12.541

  • 期刊类型引用(3)

    1. 李家科,刘欣,王艳香,范学运,郭平春. VR技术在燃烧合成粉体实验教学中的应用. 科技视界. 2022(02): 39-40 . 百度学术
    2. 邢海瑞,张向阳,杨帆,胡平,王快社. 金属氧化物增强钼合金组织性能研究进展. 中国钼业. 2022(02): 8-17 . 百度学术
    3. 卢杨,王晶,赫丽杰,王复栋,张家铭. 镁铝尖晶石粉体制备及其在发光材料领域的研究进展. 无机盐工业. 2022(09): 39-46 . 百度学术

    其他类型引用(2)

图(8)  /  表(4)
计量
  • 文章访问数:  2206
  • HTML全文浏览量:  81
  • PDF下载量:  63
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-07-01
  • 录用日期:  2023-07-01
  • 网络出版日期:  2023-08-13
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回