-
摘要:
铝及铝合金具有密度低、耐腐蚀、比强度高、导热性良好等特性,常被用于轻量化、功能化零部件,广泛应用于交通运输、电子产品、医疗以及化工等领域。铝合金金属粉末注射技术能实现精细复杂结构铝合金制品的低成本高效制造,具有力学性能优良、组织均匀、尺寸精度高、原料利用率高等优点,对推动铝合金注射成形零部件的产业化进程,加速其在电子信息产品、医疗器械、新能源汽车中的应用具有重要作用。本文介绍了铝合金金属粉末注射成形的发展现状,综述了铝合金注射成形用喂料制备要求,分析了粘结剂组分设计、脱脂方式、气氛烧结制度及合金元素对烧结致密化的作用机制,并展望了铝合金粉末注射成形亟待解决的问题与发展方向。
Abstract:Aluminum and aluminum alloys have the characteristics as low density, corrosion resistance, high specific strength, and good thermal conductivity, which are widely used in transportation, electronic products, medical, and chemical industries as the lightweight and functional components. Metal powder injection (MIM) can achieve the low-cost and efficient manufacturing of the fine and complex aluminum alloy products, exhibiting the satisfactory mechanical properties, uniform microstructure, and high dimensional accuracy. Development of Al-MIM technology plays an important role in promoting the industrialization of injection molded Al alloy parts and accelerating the application in electronic information products, medical devices, and new energy vehicles. The development status of metal powder injection molding for aluminum alloys was introduced in this paper, the effects of feeding requirements, binder composition design, degreasing method, atmosphere sintering system, and action mechanism on the sintering densification were reviewed, and the problems to be solved and the development direction were prospected.
-
Keywords:
- aluminum alloys /
- metal powder injection molding /
- binder /
- degreasing /
- sintering densification
-
-
图 11 Al–Si合金在不同烧结温度(保温时间1 h)和不同保温时间(烧结温度550 ℃)条件下的力学性能[17]:(a)相对密度,1 h;(b)硬度,1 h;(c)抗拉强度,1 h;(d)相对密度,550 ℃;(e)硬度,550 ℃;(f)抗拉强度,550 ℃
Figure 11. Mechanical properties of the Al–Si alloys sintered at different sintering temperatures (1 h) for different sintering times (550 ℃)[17]: (a) relative density, 1 h; (b) hardness, 1 h; (c) tensile strength, 1 h; (d) relative density, 550 ℃; (e) hardness, 550 ℃; (f) tensile strength, 550 ℃
图 12 Al–Cu–Mg合金及添加合金元素后烧结显微组织[62]:(a)Al–3.8Cu–1Mg;(b)Al–3.8Cu–1Mg–0.1Sn;(c)Al–3.8Cu–1Mg–0.7Si;(d)Al–3.8Cu–1Mg–0.7Si–0.1Sn
Figure 12. Microstructures of the Al–Cu–Mg alloys added with different elements after sintering[62]: (a) Al–3.8Cu–1Mg; (b) Al–3.8Cu–1Mg–0.1Sn; (c) Al–3.8Cu–1Mg–0.7Si; (d) Al–3.8Cu–1Mg–0.7Si–0.1Sn
表 1 铝合金及钛铝合金的粘结剂体系及注射成形构件的力学性能
Table 1 Binder systems of the Al and Ti–Al alloys and the mechanical properties of injection molded components
材料体系
(质量分数)粉末粒径 /
µm粘结剂 组分(质量分数) 粘结剂含量 温度 / ℃ 气氛 相对密度 / % 抗拉强度 / MPa 参考文献 7429Al 35 蜡基 PW+HDPE +SA+PJ 40%(质量分数) 720 真空 98.2 96 [16] Ti47Al 30 PW+PE+SA 32%(体积分数) 1360 氩气 — — [21] Al–Si 10 62%CW+35%HDPE+3%SA 27%(质量分数) 550 氮气 95.5 154 [17] 6061Al+2%Sn 6061Al为10
Sn为4352%CW+45%HDPE+3%SA 17%(质量分数) 620 氮气 97.0 165 [18] 6061Al+2%Sn+10%AlN 6061Al为10
Sn为43
AlN为5CW+HDPE+SA 17.5%
(质量分数)640 氮气 97.1 84 [20] Ti45Al 30 PW+LDPE+PP+SA+LPW+PEG+
Naphthalene32%(体积分数) 1480 真空 — — [23] Al — POM基 POM+Lucry G55 28%(质量分数) 665 氮气 90.0 [25] 231Al — POM+表面活性剂 30%(质量分数) 665 真空 92.0 — [25] Ti–6Al–4V 30 86%POM+5%HDPE+5%EVA+2%SA+
2%PW40%(质量分数) 1280 真空 94.8 — [23] Ti–6Al–4V 20 其他 PEG+PMMA+SA 40%(体积分数) 1330 真空 — — [24] 表 2 不同烧结气氛下铝合金烧结的密度、硬度与尺寸变化率[51]
Table 2 Density, hardness, and dimensional change rate of the sintered Al alloys in different sintering atmospheres[51]
烧结气氛 密度 / (g·cm−3) 相对密度 / % 硬度,HRB 尺寸变化率 / % 高纯氮气 2.66 97.1 23 −1.65 分解氨 2.45 89.4 12 3.82 高纯氢气 2.43 88.7 8 5.02 高纯氩气 2.48 90.5 6 3.07 表 3 6061Al+Sn+AlN复合材料在不同烧结温度和热处理条件下力学性能[19]
Table 3 Mechanical properties of the 6061Al+Sn+AlN composites sintered and heat-treated in different conditions[19]
热处理条件 相对密度 / % 硬度,HRH 屈服强度 / MPa 抗拉强度 / MPa 伸长率 / % 630 ℃下烧结 94.7±0.6 75.3±1.7 80.8±3.5 134.6±23.6 1.66±0.88 635 ℃下烧结 96.4±0.4 80.2±0.9 82.0±3.6 149.7±28.3 2.33±1.88 640 ℃下烧结 97.1±0.1 80.2±0.9 84.0±3.6 184.7±9.2 6.63±3.26 645 ℃下烧结 96.9±0.1 80.0±1.4 79.5±2.4 168.3±16.7 4.65±2.48 640 ℃下烧结并T4处理 97.1±0.1 92.0±0.9 118.7±3.2 263.3±5.8 8.1±0.52 640 ℃下烧结并T6处理 97.1±0.1 96.9±0.7 — 264.3±11.1 — AA6061+2Sn烧结 97.5±0.4 68.2±2.4 75.0±7.2 157.0±11.3 9.47±3.77 AA6061+2Sn T4处理 97.5±0.4 81.8±2.8 78.2±3.4 208.8±4.2 10.41±0.69 AA6061+2Sn T6处理 97.5±0.4 96.1±0.5 278.6±13.1 303.2±19.3 — 注:T4处理,525 ℃处理1 h,水淬,自然时效250 h;T6处理,525 ℃处理1 h,水淬,175 ℃人工时效8 h。 -
[1] 关杰仁, 陈超, 丁红瑜, 等. 激光选区熔化成形Al–Mg–Sc–Zr高强铝合金研究进展. 中国有色金属学报, 2022, 32(5): 1224 Guan J R, Chen C, Ding H Y, et al. Research development of selective laser melted Al–Mg–Sc–Zr high strength aluminum alloy. Chin J Nonferrous Met, 2022, 32(5): 1224
[2] Sidambe A T, Figueroa I A, Hamilton H G C, et al. Metal injection moulding of CP–Ti components for biomedical applications. J Mater Process Technol, 2012, 212(7): 1591 DOI: 10.1016/j.jmatprotec.2012.03.001
[3] Hosseinpour M, Abdoos H. Manufacturing of nanocomposites via powder injection molding: focusing on thermal management systems—A review. J Manuf Sci Eng, 2021, 143(4): 040801 DOI: 10.1115/1.4048454
[4] Cao P, Muhammad D H. Feedstock Technology for Reactive Metal Injection Molding. 1st Ed. San Diego: Elsevier, 2020
[5] Gerling R, Schimansky F P, Wegmann G. Metal injection moulding using intermetallic γ-TiAl alloy powder. Adv Eng Mater, 2001, 3(6): 387 DOI: 10.1002/1527-2648(200106)3:6<387::AID-ADEM387>3.0.CO;2-6
[6] Dehghan-Manshadi A, Yu P, Dargusch M, et al. Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technol, 2020, 364: 189 DOI: 10.1016/j.powtec.2020.01.073
[7] Liu C, Lu H F, Qin M L, et al. Effect of powders on aluminum nitride components fabricated by PIM. Powder Technol, 2023, 420: 118409 DOI: 10.1016/j.powtec.2023.118409
[8] 孙伟成, 张淑荣, 张学萍, 等. 铝合金粉末注射成形工艺研究. 沈阳理工大学学报, 1995, 14(4): 46 Sun W C, Zhang S R, Zhang X P, et al. Research on injection molding of aluminum alloy powder. J Shenyang Ligong Univ, 1995, 14(4): 46
[9] Acar L, Gülsoy H Ö. Sintering parameters and mechanical properties of injection moulded aluminium powder. Powder Metall, 2011, 54(3): 427 DOI: 10.1179/003258910X12740974839558
[10] 杜智渊, 吴茂, 邱婷婷, 等. Al–Cu–Mg–Si系铝合金的注射成形. 中国有色金属学报, 2019, 29(11): 2471 Du Z Y, Wu M, Qiu T T, et al. Metal injection molding of Al–Cu–Mg–Si alloy. Chin J Nonferrous Met, 2019, 29(11): 2471
[11] Katou K, Mstsumoto A. Application of metal injection moulding of Al powder. J Jpn Soc Powder Powder Metall, 2016, 63(7): 468 DOI: 10.2497/jjspm.63.468
[12] Li G, Qu W Y, Luo M, et al. Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China. Trans Nonferrous Met Soc China, 2021, 31(11): 3255 DOI: 10.1016/S1003-6326(21)65729-1
[13] 崔珊, 张恩耀, 胡可, 等. 粉末粒形对Ti–6Al–4V注射成形喂料显微形貌及流变性能的影响. 粉末冶金工业, 2022, 32(4): 31 Cui S, Zhang E Y, Hu K, et al. Effect of powder shape on microscopic morphology and rheological properties of Ti–6Al–4V injection molding feedstock. Powder Metall Ind, 2022, 32(4): 31
[14] Thavanayagam G, Swan J E. Optimizing hydride-dehydride Ti–6Al–4V feedstock composition for titanium powder injection moulding. Powder Technol, 2019, 355: 688 DOI: 10.1016/j.powtec.2019.07.091
[15] Saidin H, Azuddin M. Preparation of aluminum feedstock for green part specimen using metal injection molding. Appl Mech Mater, 2013, 465-466: 1250 DOI: 10.4028/www.scientific.net/AMM.465-466.1250
[16] Dayam S, Tandon P, Priyadarshi S. Development of paste extrusion-based metal additive manufacturing process. Rapid Prototyp J, 2022, 28(10): 1920 DOI: 10.1108/RPJ-05-2021-0118
[17] Ni J Q, Yu M H, Han K Q. Debinding and sintering of an injection-moulded hypereutectic Al–Si alloy. Materials, 2018, 11(5): 807 DOI: 10.3390/ma11050807
[18] Liu Z Y, Sercombe T B, Schaffer G B. Metal injection moulding of aluminium alloy 6061 with tin. Powder Metall, 2008, 51(1): 78 DOI: 10.1179/174329008X284859
[19] Liu Z Y, Kent D, Schaffer G B. Powder injection molding of Al-(steel and magnet) hybrid components. Metall Mater Trans A, 2009, 40(12): 2785 DOI: 10.1007/s11661-009-0012-1
[20] Liu Z Y, Kent D, Schaffer G B. Powder injection moulding of an Al–AlN metal matrix composite. Mater Sci Eng A, 2009, 513: 352
[21] Gerling R, Aust E, Limberg W, et al. Metal injection moulding of gamma titanium aluminide alloy powder. Mater Sci Eng A, 2006, 423(1-2): 262 DOI: 10.1016/j.msea.2006.02.002
[22] Obasi G, Ferri O, Ebel T, et al. Influence of processing parameters on mechanical properties of Ti–6Al–4V alloy fabricated by MIM. Mater Sci Eng A, 2010, 527(16-17): 3929 DOI: 10.1016/j.msea.2010.02.070
[23] Liu C C, Lu X, Yang F, et al. Metal injection moulding of high Nb-containing TiAl alloy and its oxidation behaviour at 900 ℃. Metals, 2018, 8(3): 163 DOI: 10.3390/met8030163
[24] Herbert D, Christian G, Branislav Z, et al. Method for Producing Shaped bodies from Aluminium Alloys: United States Patent, EP2552630B1. 2011-3-31
[25] 杨晓霞. Ti6Al4V合金粉末注射成形工艺研究[学位论文]. 济南: 山东大学, 2021 Yang X X. Research on the Technology of Powder Injection Molding of Ti6Al4V Alloy [Dissertation]. Jinan: Shandong University, 2021
[26] 王昆昆. Ti–6Al–4V+xY2O3合金放电等离子与注射成形制备及其性能研究[学位论文]. 南昌: 南昌航空大学, 2020 Wang K K. Study on the Properties of Ti–6Al–4V+xY2O3 Alloy Prepared by Spark Plasma Sintering and Metal Injection Molding [Dissertation]. Nanchang: Nanchang Hangkong University, 2020
[27] 刘春林, 张钱鹏, 邬均文, 等. Ti–6Al–4V金属粉末注射成形喂料的制备与性能表征. 热加工工艺, 2020, 49(6): 98 Liu C L, Zhang Q P, Wu J W, et al. Preparation and property characterization of Ti–6Al–4V feedstock by metal powder injection molding. Hot Work Technol, 2020, 49(6): 98
[28] 陈泽旭, 吴盾, 刘春林, 等. 表面处理对316L不锈钢粉末注射成形性能的影响. 粉末冶金技术, 2023, 41(4): 289 Chen Z X, Wu D, Liu C L, et al. Effect of surface treatment on powder injection molding performance of 316L stainless steel powders. Powder Metall Technol, 2023, 41(4): 289
[29] 刘春林, 张钱鹏, 陆颖, 等. 表面活性剂对Ti–6Al–4V金属注射成形喂料相容性的影响. 高分子材料科学与工程, 2018, 34(9): 96 Liu C L, Zhang Q P, Lu Y, et al. Effect of surfactants on compatibility of Ti–6Al–4V metal injection molding feedstocks. Polym Mater Sci Eng, 2018, 34(9): 96
[30] Setasuwon P, Bunchavimonchet A, Danchaivijit S. The effects of binder components in wax/oil systems for metal injection molding. J Mater Process Technol, 2008, 196(1-3): 94 DOI: 10.1016/j.jmatprotec.2007.05.009
[31] Martínková M, Hausnerová B, Huba J, et al. Powder injection molded ceramic scaffolds: The role of pores size and surface functionalization on the cytocompatibility. Mater Des, 2022, 224: 111274 DOI: 10.1016/j.matdes.2022.111274
[32] Cho H, Park J M, Kim J H, et al. Mass production of superhydrophilic micropatterned copper surfaces using powder injection molding process. Powder Technol, 2022, 411: 117779 DOI: 10.1016/j.powtec.2022.117779
[33] 尤力, 刘艳军, 潘宇, 等. 粉末注射成形钛合金粘结剂体系的研究进展. 粉末冶金技术, 2021, 39(6): 563 You L, Liu Y J, Pan Y, et al. Research progress of titanium alloy binder system for powder injection molding. Powder Metall Technol, 2021, 39(6): 563
[34] 王家惠, 史庆南, 许国红, 等. 粉末注射成形钛合金溶剂脱脂过程研究. 铸造技术, 2011, 32(3): 361 Wang J H, Shi Q N, Xu G H, et al. Research on solvent debinding process for titanium alloy injection molded compacts. Foundry Technol, 2011, 32(3): 361
[35] 李益民, 李云平. 金属注射成形原理与应用. 长沙: 中南大学出版社, 2004 Li Y M, Li Y P. Theory and Application of Metal Injection Molding. Changsha: Central South University Press, 2004
[36] 刘斌, 叶红叶, 王玉香, 等. 316L/POM复合材料熔融沉积成型件的催化脱脂工艺研究. 粉末冶金技术, 2022, 40(6): 510 Liu B, Ye H Y, Wang Y X, et al. Research on catalyst debinding process of 316L/POM composite parts fabricated by fused deposition modeling. Powder Metall Technol, 2022, 40(6): 510
[37] Huang J D, Li J. Evolution of thermophysical properties of gel-cast SiAlON green bodies in thermal debinding process. J Aust Ceram Soc, 2022, 58(1): 347 DOI: 10.1007/s41779-021-00697-9
[38] Vetter J, Huber F, Wachter S, et al. Development of a material extrusion additive manufacturing process of 1.2083 steel comprising FFF printing, solvent and thermal debinding and sintering. Proced CIRP, 2022, 113: 341
[39] 罗蒙, 周芬, 宋希文. 一种铁基合金的粉末注射成形脱脂工艺研究. 粉末冶金工业, 2019, 29(5): 68 Luo M, Zhou F, Song X W. A powder injection molding debinding process for iron-based alloys. Powder Metall Ind, 2019, 29(5): 68
[40] Qin M L, Lu H F, Wu H Y, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc, 2019, 39(4): 952 DOI: 10.1016/j.jeurceramsoc.2018.11.037
[41] 邱婷婷, 吴茂, 杜智渊, 等. 粉末冶金铝合金烧结致密化过程. 工程科学学报, 2018, 40(9): 1075 Qiu T T, Wu M, Du Z Y, et al. Sintering densification process of powder metallurgy aluminum alloy. Chin J Eng, 2018, 40(9): 1075
[42] Misra A K. Thermochemical analysis of the silicon carbide-alumina reaction with reference to liquid-phase sintering of silicon carbide. J Am Ceram Soc, 1991, 74(2): 345 DOI: 10.1111/j.1151-2916.1991.tb06885.x
[43] Candelario V M, Nieto M I, Guiberteau F, et al. Aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives. J Eur Ceram Soc, 2013, 33(10): 1685 DOI: 10.1016/j.jeurceramsoc.2013.01.030
[44] Mohammadzadeh A, Azadbeh M, Namini A S. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization. Sci Sinter, 2014, 46(1): 23 DOI: 10.2298/SOS1401023M
[45] Karwan B J. The properties of Fe–Ni–Mo–Cu–B materials produced via liquid phase sintering. Arch Metall Mater, 2011, 56(3): 789
[46] Lang F Q, Yamaguchi H, Nakagawa H, et al. Thermally stable bonding of SiC devices with ceramic substrates: transient liquid phase sintering using Cu/Sn powders. J Electrochem Soc, 2013, 160(8): 315 DOI: 10.1149/2.114308jes
[47] Izhevskyi V A, Genova L A, Bressiani J C, et al. Liquid-phase sintering of SiC-based ceramics. Key Eng Mater, 2001, 189-191: 173 DOI: 10.4028/www.scientific.net/KEM.189-191.173
[48] Mohammadi M S, Simchi A, Gierl C. Phase formation and microstructural evolution during sintering of Al–Zn–Mg–Cu alloys. Powder Metall, 2010, 53(1): 62 DOI: 10.1179/003258908X344707
[49] Crossin E, Yao J Y, Schaffer G B, et al. Swelling during liquid phase sintering of Al–Mg–Si–Cu alloys. Powder Metall, 2007, 50(4): 354 DOI: 10.1179/174329007X223947
[50] Muthuchamy A, Srikanth M, Agrawal D K, et al. Effect of microwave and conventional modes of heating on sintering behavior, microstructural evolution and mechanical properties of Al–Cu–Mn alloys. Molecules, 2021, 26(12): 3675 DOI: 10.3390/molecules26123675
[51] 党文龙, 汪礼敏, 杨振亮, 等. 烧结气氛与温度对AlCuMgSi合金性能的影响. 粉末冶金材料科学与工程, 2014, 19(6): 921 DOI: 10.3969/j.issn.1673-0224.2014.06.013 Dang W L, Wang L M, Yang Z L, et al. Effect of sintering atmosphere and temperature on the performance of P/M Al–Cu–Mg–Si alloy. Mater Sci Eng Powder Metall, 2014, 19(6): 921 DOI: 10.3969/j.issn.1673-0224.2014.06.013
[52] Schaffer G B, Hall B J, Bonner S J, et al. The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater, 2006, 54(1): 131
[53] Schubert T, Pieczonka T, Baunack S, et al. The influence of the atmosphere and impurities on the sintering behaviour of aluminium // Euro PM 2005 Powder Metallurgy Congress and Exhibition. Prague, 2005: 3
[54] Yu P, Ma Q, Schaffer G B. Rapid prototyping of aluminium alloy parts: the effect of infiltration atmosphere. Mater Sci Forum, 2009, 618-619: 635 DOI: 10.4028/www.scientific.net/MSF.618-619.635
[55] Asgharzadeh H, Simchi A. Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites. Powder Metall, 2013, 52(1): 28
[56] Sercombe T B, Schaffer G B. The effect of trace elements on the sintering of Al–Cu alloys. Acta Mater, 1999, 47(2): 689 DOI: 10.1016/S1359-6454(98)00353-X
[57] MacAskill I A, Hexemer R L, Donaldson I W, et al. Effects of magnesium, tin and nitrogen on the sintering response of aluminum powder. J Mater Process Technol, 2010, 210(15): 2252 DOI: 10.1016/j.jmatprotec.2010.08.018
[58] Lumley R N, Sercombe T B, Schaffer G M. Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A, 1999, 30(2): 457 DOI: 10.1007/s11661-999-0335-y
[59] Kondoh K, Kimura A, Watanabe R. Effect of Mg on sintering phenomenon of aluminium alloy powder particle. Powder Metall, 2001, 44(2): 161 DOI: 10.1179/003258901666310
[60] Sercombe T B, Schaffer G B. On the role of tin in the nitridation of aluminium powder. Scr Mater, 2006, 55(4): 323 DOI: 10.1016/j.scriptamat.2006.04.045
[61] Pan Y, Lu X, Liu C C, et al. Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys. Acta Metall Sin, 2018, 54(1): 93
[62] Schaffer G B, Yao J Y, Bonner S J, et al. The effect of tin and nitrogen on liquid phase sintering of Al–Cu–Mg–Si alloys. Acta Mater, 2008, 56(11): 2615 DOI: 10.1016/j.actamat.2008.01.047
-
期刊类型引用(6)
1. Lebiao Yang,Xiaona Ren,Chao Cai,Pengju Xue,M.Irfan Hussain,Yusheng Shi,Changchun Ge. Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing. International Journal of Minerals, Metallurgy and Materials. 2023(01): 122-130 . 必应学术
2. 王娜,朱琦,周莎,席莎,武洲,吴吉娜,张晓,刘仁智,崔玉青,王锦. 热等静压烧结温度对Mo–Na合金性能影响. 粉末冶金技术. 2022(04): 356-361 . 本站查看
3. 车洪艳,王铁军,秦巍,董浩,张龙戈,张岩. 热等静压技术在金属材料加工领域的应用及发展趋势. 粉末冶金工业. 2022(04): 1-7 . 百度学术
4. 林小辉,李来平,李斌,梁静,薛建嵘,张小明. 热等静压在稀有难熔金属产品制备中的应用. 粉末冶金工业. 2017(03): 63-67 . 百度学术
5. 鲁宁宁,许磊,历长云,王有超,米国发. 石墨烯增强铝基复合材料制备技术研究进展. 粉末冶金技术. 2017(04): 310-318 . 本站查看
6. 王冰,纪玮,邓太庆,赵丰,林岩松. TA15粉末冶金产品热等静压成形工艺过程的数值模拟. 宇航材料工艺. 2017(04): 19-22 . 百度学术
其他类型引用(3)