高级检索

激光功率对激光熔覆Stellite 6合金涂层微观组织及耐磨性能的影响

张维, 尚宪和, 胡明磊, 隋飞, 贺星, 周梁栋, 倪晓晴, 张亮, 孔德成, 董超芳

张维, 尚宪和, 胡明磊, 隋飞, 贺星, 周梁栋, 倪晓晴, 张亮, 孔德成, 董超芳. 激光功率对激光熔覆Stellite 6合金涂层微观组织及耐磨性能的影响[J]. 粉末冶金技术, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
引用本文: 张维, 尚宪和, 胡明磊, 隋飞, 贺星, 周梁栋, 倪晓晴, 张亮, 孔德成, 董超芳. 激光功率对激光熔覆Stellite 6合金涂层微观组织及耐磨性能的影响[J]. 粉末冶金技术, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
ZHANG Wei, SHANG Xianhe, HU Minglei, SUI Fei, HE Xing, ZHOU Liangdong, NI Xiaoqing, ZHANG Liang, KONG Decheng, DONG Chaofang. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings[J]. Powder Metallurgy Technology, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
Citation: ZHANG Wei, SHANG Xianhe, HU Minglei, SUI Fei, HE Xing, ZHOU Liangdong, NI Xiaoqing, ZHANG Liang, KONG Decheng, DONG Chaofang. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings[J]. Powder Metallurgy Technology, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003

激光功率对激光熔覆Stellite 6合金涂层微观组织及耐磨性能的影响

详细信息
    通讯作者:

    董超芳: E-mail: cfdong@ustb.edu.cn

  • 中图分类号: TG174.44;TF125

Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings

More Information
  • 摘要:

    采用激光熔覆技术在0Cr17Ni4Cu4Nb不锈钢表面制备Stellite 6合金涂层,利用光学显微镜、扫描电子显微镜、能谱仪、电子背散射衍射分析仪、激光共聚焦显微镜等表征涂层的微观组织,并测试了试样的硬度和耐磨性能。结果表明,不同激光功率制备的涂层均无明显气孔、裂纹等缺陷,且与基体有良好的冶金结合。涂层组织主要由底部的柱状晶、中部的树枝晶以及顶部的等轴枝晶组成。涂层硬度(HV 420~510)显著高于基体(HV 206),硬度沿涂层顶部到基体逐渐降低。激光功率为1400 W的样品组织最细小均匀,同时枝晶间的硬质相(碳化物)较多,表现出最高的硬度。经过磨损实验测试,所有样品表面均出现沿滑动方向平行的犁沟,无明显磨屑堆积的情况,属于磨粒磨损机制。激光功率为1400 W的样品摩擦系数最小,同时磨痕宽度(928.463 μm)最窄,磨痕深度(45.087 μm)最小,表现出最好的耐磨性能。

    Abstract:

    Stellite 6 alloy coatings were prepared on 0Cr17Ni4Cu4Nb stainless steels by laser cladding technology. The microstructure of the coatings was characterized by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and confocal laser scanning microscopy (CLSM). The hardness and wear resistance of the samples were tested. In the results, all the coatings prepared with different laser powers have no obvious defects, such as pores and cracks, and show the good metallurgical bonding with the substrate. The microstructure of the coatings is mainly consisted of the coarse columnar dendrite at the bottom, the coarse dendritic crystals in the middle, and the fine equiaxed dendrite on the top. The hardness of the coatings (HV 420~510) is significantly higher than that of the substrate (HV 206), and the hardness gradually decreases from the top of coating to the substrate. The samples with the laser power of 1400 W exhibit the smallest and most uniform microstructure, while there are more hard phases (carbides) between dendrites. Therefore, the 1400 W samples exhibit the highest hardness. After the wear experiment testing, all the sample surfaces show the parallel furrows along the sliding direction without the obvious accumulation of debris, which belongs to the abrasive wear mechanism. The samples with the laser power of 1400 W have the lowest friction coefficient, while show the narrowest wear scar width (928.463 μm) and the minimum depth of wear marks (45.087 μm), exhibiting the best wear resistance.

  • 图  1   不同激光功率下涂层的宏观形貌

    Figure  1.   Macro-morphology of the coatings under the different laser powers

    图  2   不同激光功率下涂层底部、中部、顶部微观组织:(a)~(c)1400 W;(d)~(f)2000 W;(g)~(i)2300 W;(j)~(l)2600 W

    Figure  2.   Microstructure at the bottom, in the middle, and on the top of the coatings under the different laser powers: (a)~(c) 1400 W; (d)~(f) 2000 W; (g)~(i) 2300 W; (j)~(l) 2600 W

    图  3   图2中白色析出相能谱分析:(a)2000 W;(b)2300 W

    Figure  3.   EDS tests of the white precipitated phases in Fig.2: (a) 2000 W; (b) 2300 W

    图  4   不同激光功率下涂层底部、中部、顶部电子背散射衍射分析:(a)~(c)1400 W;(d)~(f)2000 W;(g)~(i)2300 W;(j)~(l)2600 W

    Figure  4.   EBSD diagrams at the bottom, in the middle, and on the top of the coatings under the different laser powers: (a)~(c) 1400 W; (d)~(f) 2000 W; (g)~(i) 2300 W; (j)~(l) 2600 W

    图  5   激光熔覆Stellite 6涂层和基体硬度分布

    Figure  5.   Hardness distribution of the laser cladding Stellite 6 coatings and substrates

    图  6   涂层摩擦磨损实验:(a)摩擦系数曲线;(b)磨损体积和平均摩擦系数

    Figure  6.   Friction and wear experiments of the coatings: (a) friction coefficient; (b) wear volume and average friction coefficient

    图  7   磨损试样表面形貌和磨损区域能谱分析: (a)1400W;(b)2000W;(c)2300W;(d)2600W

    Figure  7.   Surface morphology and EDS results of the worn specimens in worn area: (a) 1400W; (b) 2000W; (c) 2300W; (d) 2600W

    图  8   样品三维形貌与磨损轮廓图:(a)1400W;(b)2000W;(c)2300W;(d)2600W

    Figure  8.   Three-dimensional wear trajectory and wear profile of the samples: (a) 1400W; (b) 2000W; (c) 2300W; (d) 2600W

    表  1   基体0Cr17Ni4Cu4Nb不锈钢化学成分(质量分数)

    Table  1   Chemical composition of the 0Cr17Ni4Cu4Nb stainless steels %

    CSiMnPSCuCrNiNbFe
    0.071.001.000.040.035.0017.505.000.45余量
    下载: 导出CSV

    表  2   Stellite 6粉末化学成分(质量分数)

    Table  2   Chemical composition of the Stellite 6 powders %

    CSiMnPWCrNiMoCo
    1.150.550.450.044.5029.001.500.75余量
    下载: 导出CSV

    表  3   熔覆层和热影响区的厚度统计

    Table  3   Thickness statistics of the cladding layer and heat affected zone

    激光功率 / W熔覆层厚度 / μm热影响区 / μm
    14001891.358 ± 8.688203.951 ±11.981
    20001970.370 ± 14.340178.272 ± 13.762
    23002169.383 ± 8.120324.938 ± 10.653
    26002261.728 ± 14.540373.333 ± 12.502
    下载: 导出CSV
  • [1] 周鼎, 姚迪, 罗家成, 等. 激光修复技术研究进展综述及其在核电领域的应用前景分析. 电焊机, 2022, 52(1): 77 DOI: 10.7512/j.issn.1001-2303.2022.01.10

    Zhou D, Yao D, Luo J C, et al. Review on laser repairing technique and its potential applications in nuclear power industry. Electr Weld Mach, 2022, 52(1): 77 DOI: 10.7512/j.issn.1001-2303.2022.01.10

    [2] 杨胶溪, 贾无名, 王欣, 等. 激光熔凝处理对Zr−1Nb核燃料包壳组织和性能的影响. 材料工程, 2018, 46(8): 120 DOI: 10.11868/j.issn.1001-4381.2017.000444

    Yang J X, Jia W M, Wang X, et al. Effect of laser melting treatment on microstructure and properties of Zr−1Nb nuclear fuel cladding. J Mater Eng, 2018, 46(8): 120 DOI: 10.11868/j.issn.1001-4381.2017.000444

    [3] 李瀚涛. 热处理工艺对05Cr17Ni4Cu4Nb钢组织和性能的影响[学术论文]. 哈尔滨: 哈尔滨工业大学, 2021

    Li H T. Influence of Heat Treatment Process on Microstructure and Properties of 05Cr17Ni4Cu4Nb Steel [Dissertation]. Harbin: Harbin Institute of Technology, 2021

    [4] 杨晓辉, 易鸿, 谢会起, 等. Y2O3对AlCoCrFeNi高熵合金涂层组织及力学性能的影响. 粉末冶金技术, 2022, 40(6): 549

    Yang X H, Yi H, Xie H Q, et al. Effects of Y2O3 on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings. Powder Metall Technol, 2022, 40(6): 549

    [5] 任超. 17-4PH不锈钢表面激光熔覆Stellite 6涂层组织及性能研究[学术论文]. 上海: 上海交通大学, 2017

    Ren C. Research on Microstructure and Properties of Stellite 6 Coating by Laser Cladding on 17-4PH Stainless Steel [Dissertation]. Shanghai: Shanghai Jiaotong University, 2017

    [6] 李艳鹏, 温海骏. In625镍基合金粉末激光熔覆参数研究. 粉末冶金技术, 2021, 39(2): 153

    Li Y P, Wen H J. Study on laser cladding parameters of In625 nickel-based alloy powders. Powder Metall Technol, 2021, 39(2): 153

    [7] 马清, 张艳梅, 卢冰文, 等. 激光功率对激光熔覆FeCoNiCr高熵合金涂层组织结构及腐蚀性能的影响. 中国表面工程, 2022, 35(1): 116 DOI: 10.11933/j.issn.1007-9289.20210908002

    Ma Q, Zhang Y M, Lu B W, et al. Effects of laser power on microstructure and corrosion property of laser cladding FeCoNiCr high entropy alloy coatings. China Surf Eng, 2022, 35(1): 116 DOI: 10.11933/j.issn.1007-9289.20210908002

    [8] 王英姿, 宋亚男, 刘江伟, 等. 深冷处理对激光熔覆Ni60涂层组织及硬度的影响研究. 应用激光, 2020, 40(6): 968

    Wang Y Z, Song Y N, Liu J W, et al. Effect of cryogenic treatment on microstructure and hardness of laser cladding Ni60 coating. Appl Laser, 2020, 40(6): 968

    [9] 戴浩, 江训焱, 王燕. 激光功率对熔覆7075铝合金气孔缺陷的影响. 焊接技术, 2022, 51(9): 5

    Dai H, Jiang X Y, Wang Y. Effect of laser power on porosity defects of cladding 7075 aluminum alloy. Weld Technol, 2022, 51(9): 5

    [10]

    Kim C K, Choi S G, Kim J H, et al. Characterization of surface modification by laser cladding using low melting point metal. J Ind Eng Chem, 2020, 87: 54 DOI: 10.1016/j.jiec.2020.03.010

    [11] 巩正奇, 王灿明, 崔洪芝, 等. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术, 2019, 37(5): 323

    Gong Z Q, Wang C M, Cui H Z, et al. Effect of graphene on the microstructure and properties of nickel-based tungsten carbide coatings by laser cladding. Powder Metall Technol, 2019, 37(5): 323

    [12]

    Doliveira A S C, Da P C, Vilar R M. Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding. Surf Coat Technol, 2002, 153(2): 203

    [13]

    Gholipour A, Shamanian M, Ashrafizadeh F. Microstructure and wear behavior of Stellite 6 cladding on 17-4 PH stainless steel. J Alloys Compd, 2011, 509(14): 4905 DOI: 10.1016/j.jallcom.2010.09.216

    [14] 杨文斌, 李仕宇, 肖乾, 等. ER9车轮材料激光熔覆涂层微观组织及性能研究. 中国激光, 2022, 50(8): 1

    Yang W B, Li S Y, Xiao Q, et al. Microstructure and properties of laser cladding coatings for ER9 wheel materials. Chin J Lasers, 2022, 50(8): 1

    [15] 赵文雨. 2Cr12MoV表面激光熔覆Stellite 6涂层的组织及性能研究[学术论文]. 上海: 上海交通大学, 2015

    Zhan W Y. Research on Microstructure and Properties of Stellite 6 Coatings by Laser Cladding on 2Cr12MoV [Dissertation]. Shanghai: Shanghai Jiaotong University, 2015

    [16] 成恩超, 刘敬, 章健, 等. 激光熔覆Fe−Cr−Ni合金涂层的微观组织及摩擦磨损性能. 材料热处理学报, 2022, 43(8): 143

    Cheng E C, Liu J, Zhang J, et al. Microstructure and friction and wear properties of laser cladding Fe−Cr−Ni alloy layer. Trans Mater Heat Treat, 2022, 43(8): 143

    [17] 朱正兴, 刘秀波, 刘一帆, 等. 激光熔覆FeCoCrNi系高熵合金涂层的组织及高温摩擦学性能. 材料工程, 2023, 51(3): 78

    Zhu Z X, Liu X B, Liu Y F, et al. Microstructure and high-temperature tribological properties of laser cladding FeCoCrNi-based high-entropy alloy coatings. J Mater Eng, 2023, 51(3): 78

    [18] 欧阳昌耀, 李艳玲, 王蕊, 等. 304钢表面激光熔覆Stellite 12钴基涂层组织及腐蚀性能. 表面技术, 2022, 51(11): 295

    Ouyang C Y, Li Y L, Wang R, et al. Microstructure and corrosion properties of laser cladding Stellite 12 coating on 304 steel. Surf Technol, 2022, 51(11): 295

    [19] 于诗晴. 不同温度下Stellite 6与Stellite 21堆焊层组织与性能研究[学术论文]. 沈阳: 沈阳工业大学, 2022

    Yu S Q. Study on Microstructure and Properties of Stellite 6 and Stellite 21 Welding Layers at Different Temperatures [Dissertation]. Shenyang: Shenyang University of Technology, 2022

    [20] 陈源. 激光增材制造Inconel 718合金裂纹形成机制及其控制[学术论文]. 上海: 上海交通大学, 2017

    Chen Y. Studies on Formation Mechanism and Control Methods of Cracking in Laser Additive Manufactured Inconel 718 Alloy [Dissertation]. Shanghai: Shanghai Jiaotong University, 2017

    [21]

    He X M, Liu X B, Wang M D, et al. Elevated temperature dry sliding wear behavior of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding. Appl Surf Sci, 2011, 258(1): 535 DOI: 10.1016/j.apsusc.2011.08.072

    [22] 任博. Stellite 6合金焊接熔池凝固行为的相场模拟[学术论文]. 上海: 上海交通大学, 2020

    Ren B. Phase Field Investigation of Solidification Behavior in the Welding Pool of Stellite 6 Alloy [Dissertation]. Shanghai: Shanghai Jiaotong University, 2020

    [23]

    Zhuo L, Chen S Y, Wei M W, et al. Microstructure and properties of 24CrNiMoY alloy steel prepared by direct laser deposited under different preheating temperatures. Mater Charact, 2019, 158: 109931 DOI: 10.1016/j.matchar.2019.109931

    [24]

    Li J J, Ju J, Chang W W, et al. Investigation on the microstructure and wear behavior of laser-cladded high aluminum and chromium Fe-BC coating. Materials, 2020, 13(11): 244

    [25] 许阳, 班乐, 肖志瑜. 选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能. 粉末冶金技术, 2021, 39(6): 505

    Xu Y, Ban L, Xiao Z Y. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting. Powder Metall Technol, 2021, 39(6): 505

    [26] 李新星, 王红侠, 施剑锋, 等. 烧结熔覆钢表面镍基合金涂层的组织和性能. 粉末冶金技术: 2022, 40(3): 245

    Li X X, Wang H X, Shi J F, et al. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding. Powder Metall Technol, 2022, 40(3): 245

  • 期刊类型引用(3)

    1. 张炜,萧伟健,袁传牛,张宁,陈荣昕. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术. 2024(04): 403-410+417 . 本站查看
    2. 李化蓥,刘军,张超,张璐栋,王海陆,柯建忠. 基于离散元锥形零件冲击加载的相对密度. 粉末冶金技术. 2023(04): 322-329 . 本站查看
    3. 张小粉,白瑀,李磊. 基于MARC的FC0205铁基粉末压制模拟技术. 粉末冶金工业. 2023(05): 81-88 . 百度学术

    其他类型引用(0)

图(8)  /  表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  25
  • PDF下载量:  40
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-08-10
  • 网络出版日期:  2023-11-05
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回