-
摘要:
以碳化硼微球、304不锈钢粉末为原料,采用放电等离子烧结方法制得碳化硼质量分数为4.00%的碳化硼-不锈钢复合材料,利用排水法对复合材料的密度进行测试,使用扫描电镜对碳化硼与不锈钢的微观结构进行分析,研究了烧结温度与压力对复合密度与微观结构的影响。结果表明:界面反应层厚度随烧结温度的增加而增加,提高烧结压力能明显降低烧结温度,抑制碳化硼与不锈钢界面反应层的生长速度。当烧结压力达到150 MPa时,在950 ℃烧结保温6 min后的复合材料相对密度能达到99.5%,界面反应层厚度低于5 μm。
Abstract:The B4C-stainless steel composites with B4C mass fraction of 4.00% were prepared by spark plasma sintering (SPS) method, using B4C microspheres and 304 stainless steel powders as the raw materials. The density of the composites was tested by the drainage method, the microstructures of B4C and stainless steels were analyzed by scanning electron microscope (SEM), and the effects of sintering temperature and pressure on the density and microstructure of the composites were investigated. The results show that, the thickness of the interfacial reaction layer increases with the increase of sintering temperature. Meanwhile, increasing the sintering pressure can significantly reduce the sintering temperature, which inhibits the growth of the interfacial reaction layer between B4C and stainless steels. When the pressure reaches 150 MPa, the relative density of the composites can reach 99.5% after sintering at 950 ℃ for 6 min, and the thickness of the interfacial reaction layer is less than 5 μm.
-
Keywords:
- boron carbides /
- stainless steels /
- spark plasma sintering /
- composites
-
-
-
[1] 谷明非, 黄大贵, 赵勇, 等. Gd含量对06Cr19Ni10不锈钢热中子屏蔽性能及微观组织的影响. 稀有金属材料与工程, 2022, 51(12): 4726 DOI: 10.12442/j.issn.1002-185X.20210974 Gu M F, Huang D G, Hao Y, et al. Effect of Gd content on thermal neutron shielding performance and microstructure of 06Cr19Ni10 stainless steel. Rare Met Mater Eng, 2022, 51(12): 4726 DOI: 10.12442/j.issn.1002-185X.20210974
[2] ASTM. ASTM A887-89, Standard Specification for Borated Stainless-steel Plate, Sheet, and Strip for Nuclear Application. West Conshohocken, ASTM International, 2014
[3] 李永旺, 刘光军, 王昭杰, 等. 高硼不锈钢板的组织演化及制备工艺研究. 钢铁研究学报, 2019, 31(2): 207 Li Y W, Liu G J, Wang Z J, et al. Microstructure evolution and preparation technologies of high borated stainless steel plates. J Iron Steel Res, 2019, 31(2): 207
[4] Guo C Q, Kelly P M. Modeling of spatial distribution of the eutectic M2B borides in Fe−Cr−B cast irons. J Mater Sci, 2004, 39(3): 1109 DOI: 10.1023/B:JMSC.0000012956.43917.c1
[5] 刘海定, 王东哲, 魏捍东, 等. 不锈钢中硼微合金化的晶界偏聚析出行为. 金属热处理, 2023, 38(3): 47 Liu H D, Wang D Z, Wei H D, et al. Grain boundary segregation and precipitation behavior of boron micro alloyed stainless steels. Heat Treat Met, 2023, 38(3): 47
[6] 杨霆, 郑军妹, 刘晓刚, 等. 烧结温度对420不锈钢组织和性能的影响. 粉末冶金技术, 2016, 34(5): 373 Yang T, Zheng J M, Liu X G, et al. Influence of sintering temperature on microstructure and properties of 420 stainless steel PM sintered body. Powder Metall Technol, 2016, 34(5): 373
[7] 柯美元. 316L不锈钢粉末压坯的烧结行为. 粉末冶金工业, 2012, 22(5): 29 Ke M Y. Sintering behaviors of 316L stainless steel powder. Powder Metall Ind, 2012, 22(5): 29
[8] 尚峰, 王智勇, 乔斌, 等. 热等静压UNS S32750超级双相不锈钢的组织和性能. 粉末冶金技术, 2022, 40(6): 483 Shang F, Wang Z Y, Qiao B, et al. Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing. Powder Metall Technol, 2022, 40(6): 483
[9] 陈泽旭, 吴盾, 刘春林, 等. 表面处理对 316L 不锈钢粉末注射成型性能的影响. 粉末冶金技术, 2023, 41(4): 289 Chen Z X, Wu D, Liu C L, et al. Effect of surface treatment on powder injection molding performance of 316L stainless steel powders. Powder Metall Technol, 2023, 41(4): 289
[10] Veshchunov M S, Hofmann P. Modelling of the interactions between B4C and stainless steel at high temperatures. J Nucl Mater, 1995, 26(1-2): 72
[11] 樊毅, 张金生, 刘伯威, 等. 一种高性能烧结摩擦材料摩擦剂的选择. 中南大学学报(自然科学版), 2001(4): 386 Fan Y, Zhang J S, Liu B W, et al. Selection of friction modifiers of an excellent sintered friction material. J Cent South Univ Technol Sci Technol, 2001(4): 386
[12] 张丰丽, 欧阳齐, 袁勇, 等. B4C对M3: 2 粉末冶金高速钢组织与力学性能的影响. 粉末冶金技术, 2017, 35(6): 427 Zhang F L, Ouyang Q, Yuan Y, et al. Influence of B4C on the microstructure and mechanical properties of M3: 2 powder metallurgy high-speed steel. Powder Metall Technol, 2017, 35(6): 427
[13] Dong P V, Nguyen H P, Patil S, et al. Effect of boron carbide reinforcement on properties of stainless-steel metal matrix composite for nuclear applications. J Mech Behav Mater, 2022, 31(1): 390 DOI: 10.1515/jmbm-2022-0047
[14] 卢瑶, 杨栋林. SPS烧结制备高性能超细晶钼合金. 热加工工艺, 2021, 50(10): 40 Lu Y, Yang D L. High-performance ultra-fine grain Mo alloy prepared by SPS sintering. Hot Working Technol, 2021, 50(10): 40
[15] Ratzker B, Sokol M. Exploring the capabilities of high-pressure spark plasma sintering (HPSPS): A review of materials processing and properties. Mater Des, 2023, 233: 112238 DOI: 10.1016/j.matdes.2023.112238
[16] 刘明明, 胡美华, 毕宁, 等. TiB2−B4C陶瓷复合材料高压烧结与性能表征. 硅酸盐通报, 2020, 39(3): 910 Liu M M, Hu M H, Bi N, et al. High-pressure sintering and performance characterization of TiB2−B4C ceramic composites. Bull Chin Ceram Soc, 2020, 39(3): 910
[17] Salvatore G, Hidehiro Y, Harshit P. Highly transparent α-alumina obtained by low-cost high pressure SPS. Ceram Int, 2013, 39(3): 3243 DOI: 10.1016/j.ceramint.2012.10.012
[18] Sokol M, Kalabukhov S, Dariel M P, et al. High-pressure spark plasma sintering (SPS) of transparent polycrystalline magnesium aluminate spinel (PMAS). J Eur Ceram Soc, 2014, 34(16): 4305 DOI: 10.1016/j.jeurceramsoc.2014.07.022