Preparation of Al2O3/Cu porous composites by combination of solution combustion synthesis and powder metallurgy method
-
摘要:
以硝酸铜、硝酸铝、葡萄糖和尿素为原料,采用溶液燃烧合成和氢还原法制备了Al2O3/Cu复合粉末,然后将Al2O3/Cu复合粉末与造孔剂氯化钠均匀混合,再将混合粉末冷压成型,最后通过烧结-脱溶工艺制得Al2O3/Cu多孔复合材料(A-C-M)。采用X射线衍射仪和扫描电子显微镜对粉末原料和A-C-M的微观形貌进行表征分析,使用万能试验机对A-C-M进行压缩性能测试,研究葡萄糖添加量对燃烧产物粉末的影响,探讨了Al2O3含量对A-C-M压缩性能的影响。结果表明,葡萄糖与Cu(NO3)2的摩尔比为1时,燃烧产物的比表面积达到最大值,为12.5 m2·g‒1;燃烧产物经煅烧除碳后,粉末颗粒的孔洞增加,但因高温煅烧产生烧结作用,其比表面积降低为10.2 m2·g‒1;煅烧产物经氢还原后,粉末颗粒破碎为絮状,然而因还原高温的烧结作用,使获得Al2O3/Cu复合粉末比表面积进一步降低为7.5 m2·g‒1;随Al2O3含量的增加,A-C-M孔隙率逐渐增加,其抗压缩强度逐渐降低。
Abstract:Al2O3/Cu composite powders were prepared by solution combustion synthesis and hydrogen reduction method using copper nitrate, aluminum nitrate, glucose, and urea as the raw materials. The Al2O3/Cu composite powders were uniformly mixed with the pore-forming agent sodium chloride, and then the mixed powders were cold-pressed. Finally, the Al2O3/Cu porous composite materials (A-C-M) were prepared by sintering-dissolution process. The raw powders and A-C-M were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compression performance of A-C-M was tested by universal testing machine. The effect of glucose addition on the combustion product powders was studied. The effect of Al2O3 content on the compression performance of A-C-M was discussed. The results show that, when the molar ratio of glucose to Cu(NO3)2 is 1, the specific surface area of the combustion products reaches the maximum as 12.5 m2·g‒1. After the combustion product is calcined to remove carbon, the pores of the powder particles increase, but the specific surface area is reduced to 10.2 m2·g‒1 due to the sintering effect of high temperature calcination. After the calcination products are reduced by hydrogen, the powder particles are broken into floccules. However, due to the sintering effect of high reduction temperature, the specific surface area of the obtained Al2O3/Cu composite powders is further reduced to 7.5 m2·g‒1. With the increase of Al2O3 content, the porosity of A-C-M increases gradually, and the compressive strength decreases gradually.
-
Keywords:
- porous composites /
- solution combustion synthesis /
- glucose /
- porosity /
- compressive properties
-
-
表 1 不同Al2O3含量的A-C-M力学性能
Table 1 Mechanical properties of the A-C-M with various Al2O3 contents
Al2O3摩尔
分数 / %平台应力,
σ / MPa吸收能,
W / (MJ·m‒3)0.05 4.29 37.35 0.10 2.32 49.04 0.15 0.91 22.91 -
[1] 裘腾威, 刘敏, 刘源, 等. 新型多孔铜微通道散热器研制. 低温与超导, 2020, 48(8): 85 Qiu T W, Liu M, Liu Y, et al. Research on a novel porous copper micro-channel heat sink. Low Temp Supercond, 2020, 48(8): 85
[2] 雷中祥, 解刚, 陈泽钧. 锂离子电池用三维多孔V xO y@Cu复合负极材料的制备及其储能性能. 天津工业大学学报, 2021, 40(6): 47 DOI: 10.3969/j.issn.1671-024x.2021.06.008 Lei Z X, Xie G, Chen Z J. Preparation and energy storage performance of 3D porous V xO y@Cu composite anode materials for lithium-ion batteries. J Tianjin Polytech Univ, 2021, 40(6): 47 DOI: 10.3969/j.issn.1671-024x.2021.06.008
[3] 张顺顺, 鞠春燕, 黄本生, 等. 多孔铜铬合金的制备及催化氧化性能. 材料热处理学报, 2020, 41(6): 91 Zhang S S, Ju C Y, Huang B S, et al. Preparation and catalytic oxidation properties of porous Cu−Cr alloy. Trans Mater Heat Treat, 2020, 41(6): 91
[4] 王锟, 张国光, 邵志松, 等. 电沉积多孔铜电极作阴极电芬顿降解对硝基苯酚. 给水排水, 2022, 58(11): 64 Wang K, Zhang G G, Shao Z S, et al. Degradation of p-nitrophenol with electro-Fenton by a new three-dimensional copper electrode as cathode. Water Wastewater, 2022, 58(11): 64
[5] 王清周, 李诺, 王倩, 等. 以NaCl为造孔剂制备开孔多孔铜的孔隙形貌及压缩性能. 机械工程材料, 2011, 35(4): 53 Wang Q Z, Li N, Wang Q, et al. Pore morphology and compressive properties of open-celled porous Cu fabricated by using NaCl as pore former. Mater Mech Eng, 2011, 35(4): 53
[6] 李斐斐, 张芳. 多孔金属材料的制备方法及应用. 中国铸造装备与技术, 2021, 56(1): 82 DOI: 10.3969/j.issn.1006-9658.2021.01.015 Li F F, Zhang F. Preparation method and application of porous metal material. China Foundry Mach Technol, 2021, 56(1): 82 DOI: 10.3969/j.issn.1006-9658.2021.01.015
[7] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展. 材料导报, 2022, 36(18): 74 DOI: 10.11896/cldb.20110092 Zheng M, Yang J, Zhang H. Review on preparation and applications of porous metal materials. Mater Rep, 2022, 36(18): 74 DOI: 10.11896/cldb.20110092
[8] Sabzevari M, Sajjadi S A, Moloodi A. Physical and mechanical properties of porous copper nanocomposite produced by powder metallurgy. Adv Powder Technol, 2016, 27(1): 105 DOI: 10.1016/j.apt.2015.11.005
[9] Ye B, Dunand D C. Titanium foams produced by solid-state replication of NaCl powders. Mater Sci Eng A, 2010, 528(2): 691 DOI: 10.1016/j.msea.2010.09.054
[10] Shrivas S, Pandey A, Dubey R, et al. Studies on microstructure, mechanical properties, and corrosion behavior, of partially open-cell magnesium foam through powder metallurgy route. J Mater Eng Perform, 2022, 31: 8840 DOI: 10.1007/s11665-022-06957-4
[11] 马帅, 郭曙强, 苏新, 等. 氧源系数对内氧化法制备的Al2O3/Cu复合材料性能的影响. 上海金属, 2018, 40(3): 59 DOI: 10.3969/j.issn.1001-7208.2018.03.012 Ma S, Guo S Q, Su X, et al. Effect of oxygen source coefficient on properties of Al2O3/Cu dispersion-strengthened copper composites prepared by internal oxidation process. Shanghai Met, 2018, 40(3): 59 DOI: 10.3969/j.issn.1001-7208.2018.03.012
[12] Li G B, Sun J B, Guo Q M, et al. Morphology and frictional characteristics fabrication of the nanometer Al2O3 /Cu composite by internal oxidation. J Mater Process Technol, 2005, 170(1-2): 336 DOI: 10.1016/j.jmatprotec.2005.05.011
[13] 符学龙, 李春波. 共沉淀法制备纳米Al2O3强化铜基复合材料微动磨损研究. 新技术新工艺, 2009(5): 87 DOI: 10.3969/j.issn.1003-5311.2009.05.032 Fu X L, Li C B. Research on fretting wear properties of nano-Al2O3 reinforced copper-matrix composites prepared by coprecipitation method. New Technol New Technol, 2009(5): 87 DOI: 10.3969/j.issn.1003-5311.2009.05.032
[14] 储爱民, 郭自强, 赵玉萍, 等. NaCl辅助低温燃烧合成法制备Al2O3/Cu复合粉末的研究. 矿冶工程, 2019, 39(6): 133 DOI: 10.3969/j.issn.0253-6099.2019.06.033 Chu A M, Guo Z Q, Zhao Y P, et al. Preparation of Al2O3/Cu composite powders by NaCl-assisted low-temperature combustion synthesis. Min Metall Eng, 2019, 39(6): 133 DOI: 10.3969/j.issn.0253-6099.2019.06.033
[15] Raju L S, Kumar A. A novel approach for fabrication of Cu/Al2O3 surface composites by friction stir processing. Procedia Mater Sci, 2014, 5: 434 DOI: 10.1016/j.mspro.2014.07.286
[16] Siddique F, Gonzalez-Cortes S, Mirzaei A, et al. Solution combustion synthesis: The relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale, 2022, 14: 11806 DOI: 10.1039/D2NR02714C
[17] Chen P Q, Qin M L, Chen Z, et al. A novel approach to synthesize the amorphous carbon-coated WO3 with defects and excellent photocatalytic properties. Mater Des, 2016, 106: 22 DOI: 10.1016/j.matdes.2016.05.090
[18] 王建忠, 敖庆波, 马军, 等. 钛合金纤维多孔材料制备及压缩性能. 粉末冶金技术, 2023, 41(2): 125 Wang J Z, Ao Q B, Ma J, et al. Preparation and compressive properties of Ti alloy fiber porous materials. Powder Metall Technol, 2023, 41(2): 125
[19] Japanese Industrial Standards Committee. JIS-H-7902 Method for Compressive Test of Porous Metals. Tokyo: Japanese Standards Association, 2008
[20] 储爱民, 王志谦, 王龙, 等. Y2O3/Cu复合粉末的制备研究. 矿冶工程, 2017, 37(6): 109 DOI: 10.3969/j.issn.0253-6099.2017.06.027 Chu A M, Wang Z Q, Wang L, et al. Synthesis of Y2O3/Cu composite powders. Min Metall Eng, 2017, 37(6): 109 DOI: 10.3969/j.issn.0253-6099.2017.06.027
[21] Cao Z Q, Qin M L, Chu A M, et al. Glucose-assisted combustion-nitridation synthesis of well-distributed CrN nanoparticles. Mater Res Bull, 2014, 52: 74 DOI: 10.1016/j.materresbull.2014.01.011
[22] 陈鹏起, 台运霄, 程继贵. 溶液燃烧法制备Mo–La2O3纳米粉体及烧结性能的研究. 粉末冶金技术, 2021, 39(3): 203 Chen P Q, Tai Y X, Cheng J G. Study on the sintering properties of Mo−La2O3 nano-powders by solution combustion method. Powder Metall Technol, 2021, 39(3): 203
[23] 杨腾, 佟海云, 郑毅, 等. Al2O3/Cu多孔复合材料的微观形貌和压缩性能. 材料热处理学报, 2023, 44(10): 42 Yang T, Tong H Y, Zheng Y, et al. Micromorphology and compressive properties of Al2O3/Cu porous composites. J Mater Heat Treat, 2023, 44(10): 42
[24] Andrews E W, Gibson L J, Ashby M F. The creep of cellular solids. Acta Mater, 1999, 47(10): 2853 DOI: 10.1016/S1359-6454(99)00150-0
-
期刊类型引用(3)
1. 张炜,萧伟健,袁传牛,张宁,陈荣昕. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术. 2024(04): 403-410+417 . 本站查看
2. 李化蓥,刘军,张超,张璐栋,王海陆,柯建忠. 基于离散元锥形零件冲击加载的相对密度. 粉末冶金技术. 2023(04): 322-329 . 本站查看
3. 张小粉,白瑀,李磊. 基于MARC的FC0205铁基粉末压制模拟技术. 粉末冶金工业. 2023(05): 81-88 . 百度学术
其他类型引用(0)