高级检索

面向等离子体钨基材料热负荷损伤研究进展

尹怡, 秦思贵, 史英丽, 于宏新, 徐世伟

尹怡, 秦思贵, 史英丽, 于宏新, 徐世伟. 面向等离子体钨基材料热负荷损伤研究进展[J]. 粉末冶金技术, 2024, 42(3): 242-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110008
引用本文: 尹怡, 秦思贵, 史英丽, 于宏新, 徐世伟. 面向等离子体钨基材料热负荷损伤研究进展[J]. 粉末冶金技术, 2024, 42(3): 242-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110008
YIN Yi, QIN Sigui, SHI Yingli, YU Hongxin, XU Shiwei. Research progress on thermal load damage behavior of tungsten-based plasma facing materials[J]. Powder Metallurgy Technology, 2024, 42(3): 242-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110008
Citation: YIN Yi, QIN Sigui, SHI Yingli, YU Hongxin, XU Shiwei. Research progress on thermal load damage behavior of tungsten-based plasma facing materials[J]. Powder Metallurgy Technology, 2024, 42(3): 242-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110008

面向等离子体钨基材料热负荷损伤研究进展

详细信息
    通讯作者:

    秦思贵: E-mail: qinsigui@atmcn.com

  • 中图分类号: TF123;TG146.1

Research progress on thermal load damage behavior of tungsten-based plasma facing materials

More Information
  • 摘要:

    在核聚变反应堆运行过程中,面向等离子体钨基材料需要承受住一定次数稳态和瞬态热负荷的冲击而不发生开裂、熔化等损伤,因此改善面向等离子体钨基材料的力学性能及高温稳定性是极其重要的,主要手段包括合金强化、弥散强化、纤维增韧、第二相强化、复合强化等。本文分析了合金强化、弥散强化等改性手段对钨基材料热负荷损伤行为的影响,总结了各种强化手段的优势和不足,并对面向等离子体掺杂钨基材料热负荷损伤行为进行了展望。

    Abstract:

    During the operation of nuclear fusion reactors, the plasma facing tungsten-based materials need to withstand a certain number of steady-state and transient thermal loads without cracking, melting, and other damage. It is very important to improve the mechanical properties and high temperature stability of plasma facing tungsten-based materials, the current modification methods mainly include alloy strengthening, dispersion strengthening, fiber toughening, second phase strengthening, composite strengthening, and so on. The effect of modification methods on the thermal load damage behavior of tungsten-based materials was investigated in this paper, such as alloy strengthening and dispersion strengthening, the advantages and disadvantages of those strengthening methods were summarized, and the thermal load damage behavior of plasma facing tungsten-based materials was prospected.

  • 先进制造业和机器人技术的发展对金属基多孔材料产生了更大的需求和更高的要求。精密机械用含油自润滑轴承、机器人关节摩擦副、电力系统受电滑板等是高性能金属基多孔材料的典型应用领域,不仅要求材料具有良好的减摩耐磨性能,还要具备储油自润滑的功能和良好的电、热传导性能[1-6]。采用粉末烧结技术制备金属基多孔材料具有生产效率高、成分组织易调控、性能稳定等优点,应用前景广阔。

    铜基石墨自润滑材料是一种重要的金属基多孔材料,不仅具有铜基合金良好的力学性能、耐蚀性能、导热和导电性能,还具备减摩、耐磨、抗咬合等摩擦学性能,在航空、汽车、铁路、电力、矿山等领域中获得了广泛的关注[4-6]。由于铜与石墨既不润湿也不发生反应,所以单纯的铜–石墨复合材料界面结合强度低,在承受较重载荷时,易造成石墨相剥落,使摩擦系数增大,磨损率增加[7]。为了改善铜基体与石墨的润湿性,提高铜–石墨复合材料的综合力学性能,人们采取了铜基体合金化、石墨颗粒表面处理、氧化物掺杂等措施[7-10]。然而,铜基体合金化会降低材料导电性和耐热稳定性,石墨颗粒表面处理会增加工艺难度和成本。因此,加入不溶于铜基体的表面活性组分就成为改善铜–石墨界面润湿性的新途径[11]

    SnO2与石墨有着良好的亲和性,二者的复合物可用于气敏传感器、太阳能电池、薄膜电阻、光催化触媒和锂离子电池负极等材料[12-14]。此外,SnO2在高温下可以被碳还原为液态锡,液态锡对铜有着非常好的浸润性,可以溶入铜中形成固溶体。因此,将SnO2加入铜–石墨复合材料有助于改善石墨与铜的界面结合。另外,SnO2是一种具有导电性的氧化物,将其加入铜–石墨复合材料不会对材料的导电性造成太大的损失。基于上述考虑,本文以Cu、石墨和SnO2粉末为原料,采用SiO2–B2O3–Al2O3系铜合金助焊剂辅助的常压粉末烧结工艺制备了Cu–C–SnO2多孔复合材料,前期已报道了SiO2–B2O3–Al2O3系助焊剂对Cu–C–SnO2多孔复合材料组织和性能的影响[15],本文探讨烧结温度对其组织和性能的影响。

    实验中使用的原料为400目雾化铜粉(纯度≥99.7%)、高纯石墨粉(纯度≥99.9%)、氧化锡粉(纯度≥99.0%)、SiO2–B2O3–Al2O3系铜合金助焊剂(融化温度约770℃)。为了保证烧结体中有足够量的石墨不被二氧化锡氧化烧损殆尽,又不至于因石墨太多而不利于烧结,依据经验取C/SnO2质量比为1.0:6.3;为了保证在烧结体中铜颗粒连成骨架的情况下掺入尽可能多的SnO2和石墨,参考文献[16],取Cu/(Cu+C+SnO2)体积分数为0.67。以Cu密度8.96、石墨密度2.26和SnO2密度6.48计算,按照Cu/C/SnO2质量比4.091:0.159:1.000进行粉体配料。用JA1003型千分之一电子天平进行配料称重。先将SnO2和石墨粉在研磨钵中混合、研磨10 min,再加入铜粉,研磨20 min;然后,按照以往研究确定的助焊剂最佳加入量(混合粉体与助焊剂质量比100:5[15])加入一定质量的SiO2–B2O3–Al2O3系助焊剂,继续研磨20 min,得到成品粉体。

    将配制好的成品粉体填充于石墨型中,橦实并封盖,在SX2-2.5-10A型箱式电阻炉中加热、保温和随炉冷却,烧结工艺如图 1所示。

    图  1  Cu–C–SnO2混合粉体烧结工艺:(a)烧结粉体封装;(b)烧结温度–时间曲线
    Figure  1.  Sintering technology of the Cu–C–SnO2 mixture powders: (a) the capsulation of the mixture powders; (b) the sintering temperature-time curve

    把烧结好的样品从石墨型中取出,将其两个端面磨平抛光,然后进行组织观察和性能测试。金相组织观察、X射线衍射分析、烧结线收缩率测定、空气粘性渗透系数测试、电阻率测试、硬度测试等采用的仪器和方法与作者以往研究[15]所采用的相同。样品密度通过几何尺寸测量和质量称重数据计算得出,如式(1)所示。

    $$ \rho = \frac{{12M}}{{{\rm{ \mathsf{ π} }}h\left( {{D^2} + {d^2} + D \cdot d} \right)}} $$ (1)

    式中:ρ为样品密度,g·cm-3; h为样品高度,cm; D为样品大端直径,cm; d为样品小端直径,cm; M为样品质量,g。

    样品的渗油率测试装置和方法如图 2所示。试样由弹簧钢丝夹和纤维丝悬挂于油液上方,调节张丝旋钮,使试样下端面与油液表面恰好接触。油液表面积足够大,以使油液表面高度在渗油实验过程中的变化可以忽略。用称重电子天平记录试样重量随渗油时间的变化曲线,直至试样渗油达到饱和(重量不再增加),称量试样渗油饱和后的质量,按式(2)计算试样的渗油率。

    $$ k = \frac{{{M_{\rm{o}}} - M}}{M}\rho $$ (2)
    图  2  渗油率测试装置示意图
    Figure  2.  Illustration of the oil penetration testing device

    式中:k为试样的渗油率,g·cm-3; M为试样的原始质量,g; Mo为试样渗油达到饱和时的质量,g;ρ为试样的原始密度,g·cm-3。实验用油的动力粘度为0.065 Pa·s,密度为0.925 g·cm-3

    烧结体经磨平抛光后直接在光学金相显微镜下进行观察,结果如图 3所示,其金相组织主要由三种不同的物相组成:明亮的金属铜相(Cu)、灰暗的氧化物陶瓷相、黑色的石墨相(C)或孔洞[15]。可以看出,随着烧结温度的升高,烧结体中铜相颗粒之间界面逐渐减少,颗粒之间相互融合,连成一体;尤其是烧结温度从900℃升高到950℃时,铜相颗粒发生显著的再结晶,晶粒尺寸剧烈长大,孔洞轮廓变得光滑圆整。Felege等[17]最新的研究工作发现,将主要粒径30μm的球形纯铜粉末经300 MPa单轴压力压实,在氢气保护下进行烧结实验,在1020℃烧结温度下铜颗粒发生了明显的再结晶,Σ3孪晶和大角度晶界明显减少,孔洞形状球化,大小趋于均匀。

    图  3  不同烧结温度下烧结体金相组织:(a)750℃;(b)800℃;(c)850℃;(d)900℃;(e)950℃
    Figure  3.  Metallographic structures of the sintered compacts at different sintering temperatures: (a) 750℃; (b) 800℃; (c) 850℃; (d)900℃; (e) 950℃

    图 4为不同烧结温度下所得烧结体的X射线衍射分析结果。由图 4(a)可以看出,烧结体中氧化物相的成分和结构比较复杂,有Sn O、SnO2、Cu2O、SiO2、莫来石和刚玉。烧结温度为750℃时,几乎没有SiO2、莫来石和刚玉等物相的衍射峰出现;随着烧结温度升高,Sn O、SnO2、Cu2O逐渐减少,SiO2、莫来石和刚玉等物相的衍射峰逐渐增强,说明硅、铝氧化物矿化程度增大;当烧结温度达到950℃时,Sn O、SnO2、Cu2O基本消失。图 4(b)为各相质量分数随烧结温度的变化情况,由X射线衍射主峰强度,以Cu相为内标计算所得。

    图  4  烧结体X射线衍射分析:(a)衍射谱;(b)物相含量
    Figure  4.  X-ray diffraction analysis of the sintered compacts: (a) diffraction spectrum; (b) phase content

    Sn O、SnO2、Cu2O随烧结温度升高而减少的原因是发生了如下式(3)~式(4)的碳还原反应。

    $$ {{\rm{SnO}} + {\rm{C}} = {\rm{Sn}} + {\rm{CO}}} $$ (3)
    $$ {{\rm{Sn}}{{\rm{O}}_2} + {\rm{C}} = {\rm{SnO}} + {\rm{CO}}} $$ (4)
    $$ {{\rm{C}}{{\rm{u}}_2}{\rm{O}} + {\rm{C}} = 2{\rm{Cu}} + {\rm{CO}}} $$ (5)

    根据热力学计算[18],在标准状态下,式(3)和式(4)在700℃以上就可以发生,式(5)在100℃以上就可以发生。在本研究所采用的烧结条件下,CO的平衡分压力远小于1标准大气压,上述反应的热力学条件充分。但由于反应物都是固相,需要较高的温度提供反应激活能,因此,在有限的烧结时间里,上述反应进行的程度随烧结温度的变化而变化,烧结温度越高,反应进行的越充分,氧化物残留量越少。

    硅、铝氧化物矿化是不同氧化物固体颗粒在低熔点熔融复合盐的包围下通过界面反应进行的,需要反应界面两侧氧化物的不断溶解和扩散。氧化物溶解和扩散的速度随温度升高而加快,在有限的烧结时间里,氧化物溶解和扩散进行的程度随烧结温度的升高而增大,所生成的矿化晶体(SiO2、莫来石和刚玉等)数量随烧结温度的升高而增加。

    图 5图 6分别是烧结体线收缩率和密度随烧结温度的变化情况,两者趋势相同。随烧结温度升高,烧结体线收缩率和密度增大。烧结温度800℃为一临界点,烧结温度低于800℃时,线收缩率和密度随烧结温度升高迅速增大;烧结温度高于800℃时,线收缩率和密度随烧结温度的升高而增加速率降低,并呈指数增加趋势。出现上述变化的原因是存在着两种烧结收缩机制:800℃以下烧结时,由助焊剂熔化造成的氧化物熔融凝固收缩是导致烧结体收缩的主要因素,烧结温度升高,氧化物熔融程度增加,冷却时凝固收缩量增大;800℃以上烧结时,由助焊剂熔化造成的氧化物熔融已经彻底完成,继续升高烧结温度,氧化物熔融程度不再增加,冷却时凝固收缩量也就不再增加,这时铜颗粒固相再结晶造成的收缩表现出来。固相再结晶是减少晶体缺陷而产生收缩,其收缩量远小于凝固收缩量。固相再结晶通过晶体内的原子扩散来实现,需要热激活,其进行的速度受温度控制,与温度成指数关系,在有限的烧结时间里,铜颗粒固相再结晶进行的程度也就与烧结温度成指数关系,由此造成烧结体收缩量随烧结温度升高呈指数增加的趋势。

    图  5  烧结温度对烧结体收缩率的影响
    Figure  5.  Effect of sintering temperature on the sintering shrinkage of the sintered compacts
    图  6  烧结温度对烧结体密度的影响
    Figure  6.  Effect of sintering temperature on the density of the sintered compacts

    图 7图 8图 9分别为烧结体电阻率、渗油率以及空气粘性渗透系数随烧结温度的变化情况。从图中可以看出,随着烧结温度升高,烧结体的电阻率、渗油率、空气粘性渗透系数呈现出相似的变化趋势:先减小后增大,在烧结温度850~900℃之间达到最小值。

    图  7  烧结温度对烧结体电阻率的影响
    Figure  7.  Effect of sintering temperature on the electrical resistivity of the sintered compacts
    图  8  烧结温度对烧结体渗油率的影响
    Figure  8.  Effect of sintering temperature on the oil penetration rate of the sintered compacts
    图  9  烧结温度对烧结体空气粘性渗透系数的影响
    Figure  9.  Effect of sintering temperature on the air permeability coefficient of the sintered compacts

    渗油率和空气粘性渗透系数两者都反映了烧结体通透孔隙率的大小,理论上二者都与通透孔隙率成正比,但由于油和空气对烧结体物相润湿性存在显著差异,在孔隙尺寸很小时,毛细力作用对渗油率和空气粘性渗透系数的影响明显不同。油对于烧结体物相是润湿的,毛细力的作用促进油的渗透,烧结体孔隙尺寸越小,油越容易渗透;空气粘性渗透的阻力却随烧结体孔隙尺寸减小而增大。当烧结温度升高到较高范围(900~950℃)时,烧结体收缩使孔隙尺寸减小,SnO2和石墨相烧蚀使分散细小的孔隙数量增加,从而使烧结体渗油率显著回升,而空气粘性渗透系数却回升缓慢。电阻率随烧结温度变化的趋势与渗油率和空气粘性渗透系数的变化趋势相似,说明影响烧结体导电性的主要因素是材料的孔隙率。

    图 10为烧结体里氏硬度随烧结温度的变化。可以看出,随着烧结温度升高,烧结体里氏硬度经历了两个上升阶段,在两个上升阶段之间存在一个硬度突变。在750~800℃烧结温度范围内,里氏硬度随烧结温度升高而升高;在烧结温度800~850℃之间存在一个临界温度,里氏硬度突然降低;在烧结温度850~950℃范围内,里氏硬度继续随烧结温度升高而升高。分析其原因,里氏硬度表征的是材料抵抗冲击性动载荷的能力,对于易变形的金属和分散的陶瓷颗粒堆积体示值都低,对于坚硬强韧的致密物相示值就高。虽然热力学计算表明式(5)在本研究所采用的烧结条件下可以自发进行,但动力学上Cu2O的生成与分解存在一个临界温度,图 11所示的金属铜在大气中的微商热重曲线(derivative thermogravimetry, DTG)表明此温度为827℃。温度高于此临界温度,Cu和Cu2O随气氛氧势不同而相互转化的速度很快;温度低于此临界温度,Cu和Cu2O随气氛氧势不同而相互转化的速度很慢。在本研究所采用的烧结气氛(有碳存在)下,烧结温度低于827℃时,Cu2O可以稳定存在,随烧结温度升高,Cu氧化程度增大,Cu2O数量增加(见图 4),烧结体的里氏硬度随之升高;烧结温度高于827℃时,Cu2O开始被C还原成金属Cu,烧结体里氏硬度突然降低,随着烧结温度继续升高,Cu颗粒固相再结晶使烧结体组织致密化,再加上硅、铝氧化物矿化数量增加,从而使里氏硬度随之继续升高。

    图  10  烧结温度对烧结体硬度的影响
    Figure  10.  Effect of sintering temperature on the hardness of the sintered compacts
    图  11  金属铜在大气中的微商热重曲线
    Figure  11.  Derivative thermogravimetry curve of copper in the atmosphere

    (1)随着烧结温度升高,烧结体中的铜相颗粒因再结晶而逐渐融合,颗粒之间界面减少;尤其是烧结温度从900℃升高到950℃时,铜相颗粒发生显著的再结晶。

    (2)随着烧结温度升高,Sn O、SnO2、Cu2O逐渐减少,硅、铝氧化物矿化程度增大;烧结温度达到950℃时,Sn O、SnO2、Cu2O基本消失。

    (3)随着烧结温度升高,烧结体线收缩率和密度增大。烧结温度800℃为一临界点,烧结温度低于800℃时,线收缩率和密度随烧结温度升高迅速增大;烧结温度高于800℃时,线收缩率和密度随烧结温度升高而呈指数趋势缓慢增加。

    (4)随着烧结温度升高,烧结体的电阻率、渗油率、空气粘性渗透系数呈现出相似的变化趋势:先减小后增大,在烧结温度850~900℃之间达到最小。

    (5)随着烧结温度升高,烧结体里氏硬度经历了两个上升阶段,在烧结温度800~850℃之间存在一个临界温度,里氏硬度突然降低。

  • 图  1   W–10%Re合金的典型表面损伤机制[32]

    Figure  1.   Typical surface damage mechanisms of the W–10%Re alloys[32]

    图  2   中子辐照钨的热阻率与总固体嬗变量的关系[5]

    Figure  2.   Thermal resistivity of the neutron-irradiated tungsten plotted against the total solid transmutation[5]

    图  3   纯W、W–1%Ta、W–3%Ta、W–5%Ta、W–1%Re、W–3%Re的热扩散率比较[34]

    Figure  3.   Comparison of thermal diffusivity for pure W, W–1%Ta, W–3%Ta, W–5%Ta, W–1%Re, W–3%Re[34]

    图  4   不同吸收功率密度下,单脉冲5 ms后S–WZC和R–WZC加载区域的扫描电子显微形貌[53]:(a)0.44 GW·m−2;(b)0.66 GW·m−2;(c)和(d)0.88 GW·m−2;(e)和(f)1.10 GW·m−2

    Figure  4.   SEM images of S–WZC and R–WZC in the loaded areas after single pulse for 5 ms at room temperature with the various absorbed power densities[53]: (a) 0.44 GW·m−2; (b) 0.66 GW·m−2; (c) and (d) 0.88 GW·m−2; (e) and (f) 1.10 GW·m−2

    图  5   吸收功率密度为25 MW·m−2(a)和30 MW·m−2(b)时WZC材料循环稳态热负荷表面[56]

    Figure  5.   Thermal loaded surface of WZC with the absorbed power density of 25 MW·m−2 (a) and 30 MW·m−2 (b)[56]

    图  6   0.64 GW·m−2下完全再结晶样品的扫描电子显微形貌[63]:(a)热负荷区;(b)热影响区;(c)熔融区

    Figure  6.   SEM images of the fully recrystallized sample at 0.64 GW·m−2[63]: (a) the heat loading zone; (b) the heat affected zone; (c) the molten zone

    图  7   100次类边界局域模式脉冲后热压和高能率锻造W–Y2O3试样表面形貌[68]:(a)热压,0.22 GW·m−2;(b)热压,0.33 GW·m−2;(c)高能率锻造,0.55 GW·m−2;(d)高能率锻造,0.66 GW·m−2

    Figure  7.   Surface morphology of the W–Y2O3 samples by hot pressing (HP) and HERF after 100 pulses[68]: (a) HP, 0.22 GW·m−2; (b) HP, 0.33 GW·m−2; (c) HERF, 0.55 GW·m−2; (d) HERF, 0.66 GW·m−2

    图  8   独特的W–K合金燕尾拼接结构形成过程示意图[54,7778]

    Figure  8.   Schematic diagram of the formation process of the unique W–K alloy dovetail splicing structure[54,7778]

  • [1]

    Villari R, Barabash V, Escourbiac F, et al. Nuclear analysis of the ITER full-tungsten divertor. Fusion Eng Des, 2013, 88(9-10): 2006 DOI: 10.1016/j.fusengdes.2013.02.156

    [2]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, et al. ITER tungsten divertor design development and qualification program. Fusion Eng Des, 2013, 88(9-10): 1798 DOI: 10.1016/j.fusengdes.2013.05.010

    [3]

    Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction. J Nucl Mater, 2019, 519: 334 DOI: 10.1016/j.jnucmat.2019.03.035

    [4]

    Gonderman S, Tripathi J K, Novakowski T J, et al. Effect of dual ion beam irradiation (helium and deuterium) on tungsten–tantalum alloys under fusion relevant conditions. Nucl Mater Energy, 2017, 12: 346 DOI: 10.1016/j.nme.2017.02.011

    [5]

    Katoh Y, Snead L L, Garrison L M, et al. Response of unalloyed tungsten to mixed spectrum neutrons. J Nucl Mater, 2019, 520: 193 DOI: 10.1016/j.jnucmat.2019.03.045

    [6]

    Wurster S, Baluc N, Battabyal M, et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater, 2013, 442(1-3): S181 DOI: 10.1016/j.jnucmat.2013.02.074

    [7]

    Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten. J Nucl Mater, 2003, 323(2-3): 304 DOI: 10.1016/j.jnucmat.2003.08.009

    [8]

    Giannattasio A, Tanaka M, Joseph T D, et al. An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials. Phys Scr, 2007, T128: 87 DOI: 10.1088/0031-8949/2007/T128/017

    [9]

    Rupp D, Weygand S M. Anisotropic fracture behaviour and brittle-to-ductile transition of polycrystalline tungsten. Philos Mag, 2010, 90(30): 4055 DOI: 10.1080/14786435.2010.504198

    [10]

    Gaganidze E, Rupp D, Aktaa J. Fracture behaviour of polycrystalline tungsten. J Nucl Mater, 2014, 446(1-3): 240 DOI: 10.1016/j.jnucmat.2013.11.001

    [11]

    Babak A V. Effect of recrystallization on the fracture toughness of tungsten. Sov Powder Metall Met Ceram, 1983, 22(4): 316 DOI: 10.1007/BF00795612

    [12]

    Steichen J M. Tensile properties of neutron irradiated TZM and tungsten. J Nucl Mater, 1976, 60(1): 13 DOI: 10.1016/0022-3115(76)90112-4

    [13]

    Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials. Fusion Eng Des, 2014, 89(7-8): 1568 DOI: 10.1016/j.fusengdes.2014.04.035

    [14]

    Yuan Y, Du J, Wirtz M, et al. Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads. Nucl Fusion, 2016, 56(3): 036021 DOI: 10.1088/0029-5515/56/3/036021

    [15]

    Li Y, Morgan T W, Van Dommelen J A W, et al. Fracture behavior of tungsten-based composites exposed to steady-state/transient hydrogen plasma. Nucl Fusion, 2020, 60(4): 046029 DOI: 10.1088/1741-4326/ab77e7

    [16]

    Loewenhoff Th, Hirai T, Keusemann S, et al. Experimental simulation of edge localised modes using focused electron beams-features of a circular load pattern. J Nucl Mater, 2011, 415(Suppl 1): S51

    [17]

    Hassanein A, Sizyuk T, Ulrickson M. Vertical displacement events: A serious concern in future ITER operation. Fusion Eng Des, 2008, 83(7-9): 1020 DOI: 10.1016/j.fusengdes.2008.05.032

    [18]

    Merola M, Vieider G, Bet M, et al. European achievements for ITER high heat flux components. Fusion Eng Des, 2001, 56-57: 173 DOI: 10.1016/S0920-3796(01)00253-8

    [19]

    Yin C, Terentyev D, Pardoen T, et al. Ductile to brittle transition in ITER specification tungsten assessed by combined fracture toughness and bending tests analysis. Mater Sci Eng A, 2019, 750: 20 DOI: 10.1016/j.msea.2019.02.028

    [20] 罗来马, 颜硕, 刘祯, 等. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势. 粉末冶金技术, 2023, 41(1): 12

    Luo L M, Yan S, Liu Z, et al. Research progress and trend of advanced tungsten composite modification use for plasma facing materials. Powder Metall Technol, 2023, 41(1): 12

    [21]

    Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J Mater Sci, 1995, 30(3): 770 DOI: 10.1007/BF00356341

    [22]

    Zayachuk Y, Hoen M H J, Zeijlmans van Emmichoven P A, et al. Surface modification of tungsten and tungsten–tantalum alloys exposed to high-flux deuterium plasma and its impact on deuterium retention. Nucl Fusion, 2013, 53(1): 013013 DOI: 10.1088/0029-5515/53/1/013013

    [23]

    Arshad K, Zhao M Y, Yuan Y, et al. Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys. J Nucl Mater, 2014, 455(1-3): 96 DOI: 10.1016/j.jnucmat.2014.04.019

    [24]

    Arshad K, Ding D, Wang J, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads. Nucl Mater Energy, 2015, 3-4: 32 DOI: 10.1016/j.nme.2015.05.001

    [25] 沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165

    Shen D N, Wang C N, Gao P, et al. Preparation of ultra-fine-grained tungsten titanium alloy by sintering with discharge plasma. Powder Metall Technol, 2021, 39(2): 165

    [26]

    Schmid K, Rieger V, Manhard A. Comparison of hydrogen retention in W and W/Ta alloys. J Nucl Mater, 2012, 426(1-3): 247 DOI: 10.1016/j.jnucmat.2012.04.003

    [27]

    Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten–rhenium alloys. Int J Refract Met Hard Mater, 2010, 28(6): 692 DOI: 10.1016/j.ijrmhm.2010.03.002

    [28]

    Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten. Phys Rev Lett, 2010, 104(19): 195503 DOI: 10.1103/PhysRevLett.104.195503

    [29]

    Luo A, Jacobson D L, Shin K S. Solution softening mechanism of iridium and rhenium in tungsten at room temperature. Int J Refract Met Hard Mater, 1991, 10(2): 107 DOI: 10.1016/0263-4368(91)90028-M

    [30]

    Hu Y J, Fellinger M R, Butler B G, et al. Solute-induced solid-solution softening and hardening in bcc tungsten. Acta Mater, 2017, 141: 304 DOI: 10.1016/j.actamat.2017.09.019

    [31]

    Li H, Wurster S, Motz C, et al. Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments. Acta Mater, 2012, 60(2): 748 DOI: 10.1016/j.actamat.2011.10.031

    [32]

    Siller M, Schatte J, Gerzoskovitz S, et al. Microstructural evolution of W–10Re alloys due to thermal cycling at high temperatures and its impact on surface degradation. Int J Refract Met Hard Mater, 2020, 92: 105285 DOI: 10.1016/j.ijrmhm.2020.105285

    [33]

    Nogami S, Pintsuk G, Matsui K, et al. Thermal shock behavior of potassium doped and rhenium added tungsten alloys. Phys Scr, 2020, T171: 014020 DOI: 10.1088/1402-4896/ab3dcc

    [34]

    Fukuda M, Hasegawa A, Nogami S. Thermal properties of pure tungsten and its alloys for fusion applications. Fusion Eng Des, 2018, 132: 1 DOI: 10.1016/j.fusengdes.2018.04.117

    [35]

    Tanabe T, Eamchotchawalit C, Busabok C, et al. Temperature dependence of thermal conductivity in W and W–Re alloys from 300 to 1000 K. Mater Lett, 2003, 57(19): 2950 DOI: 10.1016/S0167-577X(02)01403-9

    [36]

    Lloyd M J, Haley J, Jim B, et al. Microstructural evolution and transmutation in tungsten under ion and neutron irradiation. Materialia, 2023: 101991

    [37]

    Akiyoshi M, Garrison L M, Geringer J W, et al. Thermal diffusivity of irradiated tungsten and tungsten-rhenium alloys. J Nucl Mater, 2021, 543: 152594 DOI: 10.1016/j.jnucmat.2020.152594

    [38]

    Williams R K, Wiffen F W, Bentley J, et al. Irradiation induced precipitation in tungsten based, W–Re alloys. Metall Trans A, 1983, 14: 655 DOI: 10.1007/BF02643781

    [39]

    Srivastav A K, Bandi S, Kumar A, et al. Microstructure evolution and densification during spark plasma sintering of nanocrystalline W-5wt.%Ta alloy. Philos Mag Lett, 2020, 100(9): 442 DOI: 10.1080/09500839.2020.1793010

    [40]

    Rieth M, Reister J, Dafferner B, et al. The Impact of refractory material properties on the helium cooled divertor design. Fusion Sci Technol, 2012, 61: 381 DOI: 10.13182/FST12-1T3

    [41]

    Wurster S, Gludovatz B, Hoffmann A, et al. Fracture behaviour of tungsten–vanadium and tungsten–tantalum alloys and composites. J Nucl Mater, 2011, 413(3): 166 DOI: 10.1016/j.jnucmat.2011.04.025

    [42]

    Tejado E, Carvalho P A, Munoz A, et al. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications. J Nucl Mater, 2015, 467: 949 DOI: 10.1016/j.jnucmat.2015.10.034

    [43]

    Linsmeier Ch, Rieth M, Aktaa J, et al. Development of advanced high heat flux and plasma-facing materials. Nucl Fusion, 2017, 57(9): 092007 DOI: 10.1088/1741-4326/aa6f71

    [44]

    Nogami S, Ozawa I, Asami D, et al. Tungsten–tantalum alloys for fusion reactor applications. J Nucl Mater, 2022, 566: 153740 DOI: 10.1016/j.jnucmat.2022.153740

    [45]

    Nogami S, Wirtz M, Lied P, et al. Thermal shock behavior under deuterium plasma exposure of tungsten–tantalum alloys. Phys Scr, 2021, 96(11): 114011 DOI: 10.1088/1402-4896/ac1702

    [46]

    Sayir A. Carbon fiber reinforced hafnium carbide composite. J Mater Sci, 2004, 39(19): 5995 DOI: 10.1023/B:JMSC.0000041696.64055.8c

    [47]

    Wang Y L, Xiong X, Li G D, et al. Microstructure and ablation behavior of hafnium carbide coating for carbon/carbon composites. Surf Coat Technol, 2012, 206(11-12): 2825 DOI: 10.1016/j.surfcoat.2011.12.001

    [48]

    Kurishita H, Kobayashi S, Nakai K, et al. Current status of ultra-fine grained W–TiC development for use in irradiation environments. Phys Scr, 2007, T128: 76 DOI: 10.1088/0031-8949/2007/T128/015

    [49]

    Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement. Mater Trans, 2013, 54(4): 456 DOI: 10.2320/matertrans.MG201209

    [50]

    Tokunaga K, Kurishita H, Arakawa H, et al. High heat load properties of nanostructured, recrystallized W–1.1TiC. J Nucl Mater, 2013, 442(1-3): S297 DOI: 10.1016/j.jnucmat.2013.04.094

    [51]

    Liu R, Xie Z M, Hao T, et al. Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening. J Nucl Mater, 2014, 451(1-3): 35 DOI: 10.1016/j.jnucmat.2014.03.029

    [52]

    Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W–ZrC alloy plate at relatively low temperature. Sci Rep, 2015, 5(1): 16014 DOI: 10.1038/srep16014

    [53]

    Xie Z M, Liu R, Miao S, et al. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys. J Nucl Mater, 2016, 469: 209 DOI: 10.1016/j.jnucmat.2015.10.052

    [54]

    Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater, 2013, 12(4): 344 DOI: 10.1038/nmat3544

    [55]

    Wang M M, Xie Z M, Deng H W, et al. Thermal shock fatigue behaviors of various W-0.5wt%ZrC materials under repetitive transient heat loads. J Nucl Mater, 2020, 534: 152152

    [56]

    Wang H, Xie Z M, Cheng X, et al. Microstructural evolution and thermal fatigue damage mechanism of second-phase dispersion strengthened tungsten composites under repetitive thermal loads. J Mater Sci Technol, 2023, 140: 221 DOI: 10.1016/j.jmst.2022.09.007

    [57]

    Zhao M, Zhou Z, Zhong M, et al. Thermal shock behavior of fine grained W–Y2O3 materials fabricated via two different manufacturing technologies. J Nucl Mater, 2016, 470: 236 DOI: 10.1016/j.jnucmat.2015.12.042

    [58]

    Zinkle S J. Radiation effects in refractory alloys // AIP Conference Proceedings. Albuquerque, 2004: 733

    [59]

    Yin C, Terentyev D, Zhang T, et al. Impact of neutron irradiation on the strength and ductility of pure and ZrC reinforced tungsten grades. J Nucl Mater, 2020, 537: 152226 DOI: 10.1016/j.jnucmat.2020.152226

    [60]

    Lü Y, Han Y, Zhao S, et al. Nano-in-situ-composite ultrafine-grained W–Y2O3 materials: Microstructure, mechanical properties and high heat load performances. J Alloys Compd, 2021, 855: 157366 DOI: 10.1016/j.jallcom.2020.157366

    [61]

    Wang C, Huang H, Wei S, et al. Strengthening mechanism and effect of Al2O3 particle on high-temperature tensile properties and microstructure evolution of W–Al2O3 alloys. Mater Sci Eng A, 2022, 835: 142678 DOI: 10.1016/j.msea.2022.142678

    [62]

    Yao G, Tan X Y, Luo L M, et al. Surface damage evolution during transient thermal shock of W–2%vol Y2O3 composite material in different surfaces. Fusion Eng Des, 2019, 139: 86 DOI: 10.1016/j.fusengdes.2019.01.010

    [63]

    Ren D Y, Xi Y, Yan J, et al. Surface damage and microstructure evolution of yttria particle-reinforced tungsten plate during transient laser thermal shock. Metals, 2022, 12(4): 686 DOI: 10.3390/met12040686

    [64]

    Wei Q, Kecskes L J. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Mater Sci Eng A, 2008, 491(1-2): 62 DOI: 10.1016/j.msea.2008.01.013

    [65]

    Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation. Phys Met Metall, 2014, 115(2): 139 DOI: 10.1134/S0031918X14020070

    [66]

    Xie Z M, Liu R, Miao S, et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W–Y2O3. J Nucl Mater, 2015, 464: 193 DOI: 10.1016/j.jnucmat.2015.04.050

    [67]

    Shen T, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures. J Nucl Mater, 2016, 468: 348 DOI: 10.1016/j.jnucmat.2015.09.057

    [68]

    He C Y, Feng F, Wang J B, et al. Improving the mechanical properties and thermal shock resistance of W–Y2O3 composites by two-step high-energy-rate forging. Int J Refract Met Hard Mater, 2022, 107: 105883 DOI: 10.1016/j.ijrmhm.2022.105883

    [69]

    Wei M Y, Feng F, Wang J, et al. Room temperature ductile W-Y2O3 alloy with high thermal shock resistance. Int J Refract Met Hard Mater, 2023, 114: 106261 DOI: 10.1016/j.ijrmhm.2023.106261

    [70]

    Chen Z, Qin M, Yang J, et al. Thermal stability and grain growth kinetics of ultrafine-grained w with various amount of La2O3 addition. Metall Mater Trans A, 2020, 51(8): 4113 DOI: 10.1007/s11661-020-05836-8

    [71]

    Chen Z, Yang J, Zhang L, et al. Effect of La2O3 content on the densification, microstructure and mechanical property of W–La2O3 alloy via pressureless sintering. Mater Charact, 2021, 175: 111092 DOI: 10.1016/j.matchar.2021.111092

    [72]

    Sun Y, Wang S, Li C, et al. Dependence of deuterium retention and surface blistering on deuterium plasma exposure temperature and fluence in lanthanum oxide doped tungsten. Nucl Mater Energy, 2022, 32: 101217 DOI: 10.1016/j.nme.2022.101217

    [73]

    Kanpara S, Khirwadkar S, Belsare S, et al. Fabrication of tungsten & tungsten alloy and its high heat load testing for fusion applications. Materialstoday Proceed, 2016, 3(9): 3055

    [74]

    Zhang X, Yan Q. Morphology evolution of La2O3 and crack characteristic in W–La2O3 alloy under transient heat loading. J Nucl Mater, 2014, 451(1-3): 283 DOI: 10.1016/j.jnucmat.2014.04.001

    [75]

    Zhang X, Gong Z, Huang J, et al. Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux. Mater Res Express, 2020, 7(6): 066503 DOI: 10.1088/2053-1591/ab9689

    [76]

    Huang B, Chen L Q, Qiu W B, et al. Correlation between the microstructure, mechanical/thermal properties, and thermal shock resistance of K-doped tungsten alloys. J Nucl Mater, 2019, 520: 6 DOI: 10.1016/j.jnucmat.2019.03.056

    [77]

    Ma X, Feng F, Zhang X, et al. Effect of potassium bubbles on the thermal shock fatigue behavior of large-volume potassium-doped tungsten alloy. Nucl Fusion, 2022, 62(12): 126062 DOI: 10.1088/1741-4326/ac9a5b

    [78]

    Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices. J Nucl Mater, 2017, 496: 41 DOI: 10.1016/j.jnucmat.2017.09.022

    [79]

    Wang Y, Yan Q. Preparation of hot-rolled potassium doped tungsten (KW) thick plate and performance of KW–Cu monoblock mock-ups under high heat flux testing. Nucl Mater Energy, 2020, 23: 100744 DOI: 10.1016/j.nme.2020.100744

    [80]

    Pintsuk G, Kurishita H, Linke J, et al. Thermal shock response of fine- and ultra-fine-grained tungsten-based materials. Phys Scr, 2011, T145: 014060 DOI: 10.1088/0031-8949/2011/T145/014060

    [81]

    Ding X Y, Luo L M, Lu Z L, et al. Chemically produced tungsten–praseodymium oxide composite sintered by spark plasma sintering. J Nucl Mater, 2014, 454(1-3): 200 DOI: 10.1016/j.jnucmat.2014.07.048

  • 期刊类型引用(2)

    1. 梁凯,刘忠军,姬帅,高博阳. 过滤用金属多孔材料力学性能研究进展. 粉末冶金技术. 2024(01): 59-67 . 本站查看
    2. 朱明涛,孟云娜,凡亚丽,卢晨,侯雨珊,倪锋. 粉末烧结Cu-C-SnO_2多孔材料摩擦磨损特性研究. 粉末冶金工业. 2022(01): 36-44 . 百度学术

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  32
  • PDF下载量:  79
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-01-16
  • 录用日期:  2024-01-16
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-06-27

目录

/

返回文章
返回