高级检索

稀土氧化物Y2O3增强Cu‒Zn基自润滑材料的摩擦学行为研究

张新运, 耿楠, 赵迎香, 杜姗, 曹岩, 孟军虎, 郭俊德

张新运, 耿楠, 赵迎香, 杜姗, 曹岩, 孟军虎, 郭俊德. 稀土氧化物Y2O3增强Cu‒Zn基自润滑材料的摩擦学行为研究[J]. 粉末冶金技术. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010005
引用本文: 张新运, 耿楠, 赵迎香, 杜姗, 曹岩, 孟军虎, 郭俊德. 稀土氧化物Y2O3增强Cu‒Zn基自润滑材料的摩擦学行为研究[J]. 粉末冶金技术. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010005
ZHANG Xinyun, GENG Nan, ZHAO Yingxiang, DU Shan, CAO Yan, MENG Junhu, GUO Junde. Tribological behaviour of Cu‒Zn based self-lubricating materials reinforced with rare earth oxide Y2O3[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010005
Citation: ZHANG Xinyun, GENG Nan, ZHAO Yingxiang, DU Shan, CAO Yan, MENG Junhu, GUO Junde. Tribological behaviour of Cu‒Zn based self-lubricating materials reinforced with rare earth oxide Y2O3[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010005

稀土氧化物Y2O3增强Cu‒Zn基自润滑材料的摩擦学行为研究

基金项目: 国家自然科学基金资助项目(52275508);西安市科技计划项目(23GXFW0031);固体润滑国家重点实验室开放基金(LSL—2308)
详细信息
    通讯作者:

    郭俊德: E-mail: gjd0119@163.com

  • 中图分类号: TH117.1;TF125

Tribological behaviour of Cu‒Zn based self-lubricating materials reinforced with rare earth oxide Y2O3

More Information
  • 摘要:

    采用放电等离子闪烧法制备了含稀土氧化物Y2O3和润滑相石墨的Cu‒Zn基自润滑复合材料,研究了稀土氧化物Y2O3和石墨对铜基自润滑复合材料力学性能和摩擦磨损性能的影响规律。结果表明:添加质量分数3%石墨的Cu‒Zn合金摩擦系数比普通Cu‒Zn合金降低63.6%;添加质量分数1%稀土氧化物Y2O3的复合材料综合性能呈现峰值效应,硬度提高41.5%,摩擦系数降低25%。稀土氧化物Y2O3在基体中产生弥散强化效应,细化晶粒,提高复合材料相对密度。摩擦过程中,润滑相富集在复合材料摩擦副表面,构成性能良好的润滑层,改善了Cu‒Zn基滑动部件的摩擦学行为。

    Abstract:

    Cu‒Zn-based self-lubricating composites contained Y2O3 rare-earth oxide and graphite lubricating phase were prepared by spark plasma sintering discharge plasma flash burning method, and the effects of Y2O3 and graphite on the mechanical properties and friction and wear properties of the Cu-based self-lubricating composites were studied. The results show that the friction coefficient of the Cu‒Zn composites with 3% graphite (mass fraction) is decreased by 63.6% than that of the ordinary Cu‒Zn alloys. The comprehensive performance of the Cu‒Zn composites with 1% Y2O3 (mass fraction) shows the peak effect as the hardness is increased by 41.5% and the friction coefficient is reduced by 25%. The rare-earth oxide Y2O3 produces the dispersion strengthening effect in the matrix, refines the grain and the matrix pores, improves the relative density of the composites. During the friction process, the lubrication phases are enriched on the surface of the composite friction pairs, forming the good lubricating layers, which improves the tribological behavior of the Cu‒Zn sliding parts.

  • 锆酸钙材料(CaZrO3)具有优秀的抗水化性能、高熔点及良好的抗热震性能[1-5],拥有广阔的应用前景,由于自然界中不存在天然的CaZrO3,研究锆酸钙材料的合成就显得非常必要。制备CaZrO3的方法主要包括高温固相反应法、共沉淀法、溶胶-凝胶法、燃烧法和水热法等[6-8],高温固相法由于工艺简单、生产成本较低和生产量大等优点被人们广泛使用,但这种方法存在烧结温度高、制备锆酸钙致密性差等缺点。为了解决这些问题,研究者们在制备锆酸钙材料过程中向物系添加少量稀土氧化物、Al2O3、SiO2、CuO等添加剂,用于促进锆酸钙在低温下的烧结致密化;这些添加剂虽然可以起到促进锆酸钙材料烧结致密性的作用[9-11],但也会带来外来物质,降低CaZrO3高温使用性能。

    CaCO3作为制备CaZrO3的添加剂在高温下分解生成CaO,不会对CaZrO3产生污染;同时,由于CaCO3和制备原料Ca(OH)2分解温度不同,产生CaO晶体顺序不同,可以对CaO晶体质点的扩散产生影响。故本文考虑向锆酸钙材料中添加少量CaCO3微粉,利用分解温度不同,生成CaO晶体顺序不同,促进CaZrO3烧结致密性,降低锆酸钙烧结温度。

    以天津市科密欧化学试剂有限公司生产的分析纯Ca(OH)2和天津市光复精细化工研究生产的m-ZrO2为主要原料(平均粒度为7.4 μm和4.5 μm,纯度大于99%),实验中添加的CaCO3微粉为高纯微粉,纯度大于99%,其粒度分布如图 1示。可以看出,CaCO3微粉粒度较小,主要粒度分布在10 μm左右,D50为6 μm,D90为24 μm。

    图  1  CaCO3微粉的粒度分布
    Figure  1.  Particle size distribution of CaCO3 powders

    将Ca(OH)2和m-ZrO2按摩尔比1:1称量,等量分成五组,每组混合粉末中依次加入质量分数为0%、2%、4%、6%、8%和10%CaCO3微粉,再用卧式球磨机混合12 h,经过FLS手动四柱油压机在200 MPa压力下将混合粉末压制成ϕ20 mm圆柱试样,再用硅钼棒高温烧结炉在1600 ℃加热并保温3 h后随炉冷却到常温以备性能检测。

    烧结前将压好的试样放置在烘箱内110 ℃下保温24 h,取出冷却至常温,测量其高度(L0);试样经高温煅烧,冷却到常温后测量其烧后高度(L1),根据式(1)计算试样烧结前后线变化率(ΔLd)。

    $$ \Delta {L_{\rm{d}}} = \left[ {\left( {{L_1} - {L_0}} \right)/{L_0}} \right] \times 100\% $$ (1)

    利用阿基米德排水法检测试样煅烧后的体积密度和显气孔率[12]。煅烧后试样经切割、抛光及热处理后,采用扫描电子显微镜(scanning electron microscope,SEM)观察其组织形貌,使用X射线衍射仪(X-ray diffractometer,XRD)对其进行物相分析。

    图 2为烧结前后试样线变化率,从图 2可以看到,CaCO3微粉加入会改变试样线变化率。没有添加CaCO3微粉时,试样烧结前后线变化率为8.23%;当添加CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量增大,试样烧结前后线变化率逐渐增大;当加入CaCO3微粉质量分数为8%时,试样收缩率达到最大值,为14.89%;继续增大CaCO3微粉添加量,试样烧结前后线变化率呈降低趋势。

    图  2  线变化率与添加CaCO3微粉质量分数的关系
    Figure  2.  Relationship between shrinkage and the CaCO3 addition content by mass

    图 3为高温煅烧后制备的锆酸钙体积密度和显气孔率,由图 3可以看到,CaCO3微粉的引入对制备的锆酸钙烧结性能产生影响。当没有添加CaCO3微粉时,制备的锆酸钙体积密度为3.4 g·cm-3,显气孔率为14.5%;随CaCO3质量分数增加,制备锆酸钙体积密度逐渐增加,显气孔率逐渐减小;当CaCO3微粉添加量为8%时,制备锆酸钙的体积密度最大,为4.02 g·cm-3,显气孔率最小,为8.6%;当CaCO3质量分数继续增大时,锆酸钙的体积密度开始降低,显气孔率反增大。

    图  3  烧结试样体积密度、显气孔率与添加CaCO3质量分数的关系
    Figure  3.  Relationship of bulk density, apparent porosity, and CaCO3 addition content by mass of sintering samples

    图 4为添加质量分数10%CaCO3制备样品的X射线衍射图谱,从图中可以看出,样品经1600 ℃保温3 h后主要物相为CaZrO3以及少量CaZr4O18

    图  4  添加质量分数10%CaCO3微粉制备样品的X射线衍射图谱
    Figure  4.  XRD patterns of samples add by CaCO3 powders in the mass faction of 10%

    图 5为添加不同质量分数CaCO3微粉的样品在1600 ℃烧后放大10000倍的扫描电子显微组织结构图。从图 5可以看出,CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量的增大,试样致密性逐渐增加,锆酸钙晶粒尺寸逐渐变大,且晶体发育越来越均匀;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸最大,试样中基本无封闭气孔;当CaCO3微粉质量分数继续增大时,样品中出现封闭气孔,致密性变差,锆酸钙晶粒尺寸有变小趋势。

    图  5  添加不同质量分数CaCO3微粉的锆酸钙试样在1600 ℃烧结后扫描电子显微组织形貌:(a)0%;(b)2%;(c)4%;(d)6%;(e)8%;(f)10%
    Figure  5.  SEM micrographs of sintered CaZrO3 samples at 1600 ℃ added by CaCO3 powders in different mass fractions: (a) 0%; (b) 2%; (c) 4%; (d) 6%; (e) 8%; (f) 10%

    利用图象处理软件对图 5进行定量晶体大小测定,获得锆酸钙的平均晶粒尺寸,见表 1。可以发现,没有引入CaCO3微粉时,样品中锆酸钙晶粒尺寸最小为4.08 μm;随CaCO3微粉质量分数增大,锆酸钙晶粒尺寸逐渐增大;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸达到最大,为5.45 μm;当CaCO3微粉质量分数量继续增大时,锆酸钙晶粒尺寸反而变小。

    表  1  样品中CaCO3质量分数与锆酸钙晶粒直径的关系
    Table  1.  Relationship between CaZrO3 particle diameter and CaCO3 addition content by mass
    CaCO3质量分数/% 0 2 4 6 8 10
    CaZrO3晶粒直径/μm 4.08 4.43 4.88 5.08 5.45 5.21
    下载: 导出CSV 
    | 显示表格

    为了分析CaCO3微粉对锆酸钙烧结性能的影响,选取添加质量分数8%CaCO3微粉的试样,分别在500、600、700、800、900、1000及1100 ℃下保温3 h,分析在各个温度下烧后试样物相组成。图 6为试样在不同温度烧结后X射线衍射图谱。可以看出,试样经过500 ℃保温3 h后,物相组成没有太大变化;经过600 ℃保温3 h后,物相中开始有少量CaO出现,这是因为Ca(OH)2分解为CaO温度为580 ℃左右[13];当试样在700、800 ℃保温3 h后,Ca(OH)2质量分数逐渐减少,衍射峰逐渐减弱,CaO质量分数逐渐增大,衍射峰峰强逐渐增强,CaCO3衍射峰强在700 ℃之前逐渐增强,这是因为随烧结温度的升高,CaCO3晶粒发育越来越充分,烧成温度达到800 ℃时,CaCO3衍射峰强开始减弱,说明CaCO3开始分解为CaO;烧结温度为900 ℃时,CaCO3衍射峰逐渐减弱,CaO峰强增加迅速,这是因为CaCO3理论分解温度为850 ℃左右[14],分解生成高活性的CaO微晶均匀附着在Ca(OH)2分解形成CaO晶体表面,从而有利于CaO晶体扩散,可以促进CaO晶体长大,提高了CaO晶体的均匀性和生长致密性;继续升高烧结温度,CaCO3衍射峰强逐渐减弱乃至消失。

    图  6  添加质量分数8%CaCO3试样在不同温度烧结后X射线衍射图谱
    Figure  6.  XRD patterns of samples sintered at different temperatures add by CaCO3 powders in the mass faction of 8%

    当烧结温度达到900 ℃时,物相中开始出现CaZrO3衍射峰,说明开始生成CaZrO3。随烧结温度的提高,CaZrO3衍射峰强增加迅速,一部分原因是因为温度升高,CaZrO3迅速长大,另一部分原因是因为CaCO3分解CaO微晶附着在Ca(OH)2分解形成的CaO晶体表面,促进CaO晶体长大,为高温下CaO和ZrO2反应生成CaZrO3奠定基础。但添加过多的CaCO3微粉时,由于CaCO3在分解过程中产生过量CO2气体逸出形成大量的气体孔洞,不利于质点的迁移,导致烧结性能变差。

    (1)添加少量CaCO3微粉有利于锆酸钙烧结致密性。没有添加CaCO3微粉时,烧结温度为1600 ℃,锆酸钙体积密度为3.40 g·cm-3,显气孔率为14.5%;添加质量分数8%CaCO3微粉时,锆酸钙体积密度为4.02 g·cm-3,显气孔率为8.6%。

    (2)添加少量CaCO3微粉有利于锆酸钙晶粒长大。烧结温度为1600 ℃,无添加CaCO3微粉时,锆酸钙晶粒尺寸为4.08 μm;添加质量分数8%CaCO3微粉时,锆酸钙晶粒尺寸为5.45 μm。

  • 图  1   试样制备流程图

    Figure  1.   Flow chart of the specimen preparation

    图  2   复合材料试样的X射线衍射图谱

    Figure  2.   X-ray diffraction patterns of the composite samples

    图  3   复合材料微观形貌:(a)Y-0;(b)Y-0.5;(c)Y-1.0;(d)Y-2.0

    Figure  3.   Microstructure of the composite materials: (a) Y-0; (b) Y-0.5; (c) Y-1.0; (d) Y-2.0

    图  4   Y-1.0复合材料元素分布

    Figure  4.   Elemental distribution of the Y-1.0 samples

    图  5   复合材料的维氏硬度

    Figure  5.   Vickers hardness of the composite samples

    图  6   添加不同质量分数稀土氧化物复合材料的摩擦系数和磨损量:(a)摩擦系数曲线(5 N);(b)摩擦系数和磨损量关系曲线

    Figure  6.   Friction coefficient and wear of the composite samples added by Y2O3 rare-earth oxide in different mass fraction: (a) friction coefficient curves at 5 N; (b) relationship curves between friction coefficients and wear

    图  7   不同荷重下Y-1.0样品的摩擦系数曲线(a)和平均摩擦系数(b)

    Figure  7.   Friction coefficient curves (a) and the average friction coefficient (b) of the Y-1.0 samples under different loads

    图  8   不同荷重下Y-1.0样品表面磨痕的三维形貌图:(a)5 N;(b)10 N;(c)15 N

    Figure  8.   Three-dimensional morphology of the abrasion marks on the surface of the Y-1.0 samples under different loads: (a) 5 N; (b) 10 N; (c) 15 N

    图  9   不同荷重下Y-1.0样品表面磨痕的截面轮廓图

    Figure  9.   Cross-sectional contours of the abrasion marks on the surface of the Y-1.0 samples under different loads

    图  10   不同载荷下Y-1.0样品表面磨痕显微形貌:(a1)、(b1)5 N;(a2)、(b2)10 N;(a3)、(b3)15 N

    Figure  10.   SEM images of the abrasion marks on the surface of Y-1.0 samples under different loads: (a1), (b1) 5 N; (a2), (b2) 10 N; (a3), (b3) 15 N

    图  11   不同载荷下Y-1.0样品表面磨痕元素分布:(a)5N;(b)10N;(c)15N

    Figure  11.   Elemental distribution of abrasion marks on the surface of Y-1.0 samples under different loads: (a) 5 N; (b) 10 N; (c) 15 N

    图  12   Y-1.0复合材料试样在不同荷重下磨损机理示意图

    Figure  12.   Schematic diagram of the wear mechanism for the Y-1.0 composites under different loads

    表  1   自润滑复合原材料组成成分(质量分数)

    Table  1   Component composition of the raw materials for the self-lubricating composites %

    样品CuZn石墨Y2O3
    G0余量18.000
    Y-0余量18.03.00
    Y-0.5余量18.03.00.5
    Y-1.0余量18.03.01.0
    Y-2.0余量18.03.02.0
    下载: 导出CSV

    表  2   复合材料试样密度和相对密度

    Table  2   Density and relative density of the composite samples

    样品密度 / (g·cm−3)相对密度 / %
    Y-08.0099.20
    Y-0.57.9499.25
    Y-1.07.9199.37
    Y-2.07.7998.60
    下载: 导出CSV
  • [1] 朱烨彪, 陈志东, 郭武明, 等. 类金刚石自润滑涂层对粉末冶金零件耐磨性的影响. 粉末冶金技术, 2024, 42(5): 503

    Zhu Y B, Chen Z D, Guo W M, et al. Effect of diamond-like carbon self-lubricant coatings on wear resistance of powder metallurgy products. Powder Metall Technol, 2024, 42(5): 503

    [2] 刘二勇, 贾均红, 高义民, 等. 宽温域连续润滑材料的研究进展. 中国表面工程, 2015, 28(4): 1 DOI: 10.11933/j.issn.1007-9289.2015.04.001

    Liu E Y, Jia J H, Gao Y M, et al. Progress of continuous lubricating materials over a wide temperature range. China Surf Eng, 2015, 28(4): 1 DOI: 10.11933/j.issn.1007-9289.2015.04.001

    [3]

    Gao P, Liu C X, Tian B, et al. Microstructure, phase transformation and mechanical properties of NiMnGa/Cu composites prepared by SPS. Trans Nonferrous Met Soc China, 2022, 32(10): 3291 DOI: 10.1016/S1003-6326(22)66020-5

    [4]

    Zheng Y H, Zhao H, Zhu S J, et al. Effect of rolling deformation on microstructure and properties of Cu–Ni–Mo alloy prepared by aluminothermic reaction. Mod Phys Lett B, 2021, 35(34): 2150510 DOI: 10.1142/S0217984921505102

    [5]

    Chen S Y, Fan H, An D, et al. Research on the structure and friction properties of the SiC particles reinforced copper-based self-lubricating composites. Adv Mater Res, 2012, 535-537: 77 DOI: 10.4028/www.scientific.net/AMR.535-537.77

    [6] 杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(2): 150

    Yang Y C, Pan Y, Lu X, et al. Research progress of particle-reinforced titanium matrix composites prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(2): 150

    [7] 林盼盼, 林金城, 于迪, 等. 放电等离子体烧结技术在材料连接领域的应用现状. 焊接学报, 2022, 43(11): 15 DOI: 10.12073/j.hjxb.20220710003

    Lin P P, Lin J C, Yu D, et al. Application status of spark plasma sintering technology in the field of material joining. J Weld, 2022, 43(11): 15 DOI: 10.12073/j.hjxb.20220710003

    [8] 石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4

    Shi J L, Pei J, Zhang B P, et al. Progress of mechanical alloying combined with discharge plasma sintering technology for the preparation of thermoelectric materials. Powder Metall Technol, 2021, 39(1): 4

    [9] 韩翠柳, 沈学峰, 王衍, 等. 放电等离子烧结新技术新材料研究现状与发展趋势. 航空制造技术, 2019, 62(22): 43

    Han C L, Shen X F, Wang Y, et al. Current situation and development trend of spark plasma sintering. Aerosp Manuf Technol, 2019, 62(22): 43

    [10] 李安, 刘世锋, 王伯健, 等. 放电等离子烧结金属多孔材料研究现状. 粉末冶金技术, 2017, 35(5): 378

    Li A, Liu S F, Wang B J, et al. Development status of porous metal materials prepared by spark plasma sintering. Powder Metall Technol, 2017, 35(5): 378

    [11]

    Wang Z G, Li J, Li D Q. Analysis of tribological properties of graphite and aluminum composite materials prepared by powder metallurgy technique. Mater Express, 2020, 10(5): 663

    [12] 马文林, 刘益超, 王小超, 等. 放电等离子烧结Cu‒15Ni‒8Sn/石墨自润滑复合材料摩擦磨损性能研究. 摩擦学学报(中英文), 2024, 44(4): 509

    Ma W L, Liu Y C, Wang X C, et al. Friction and wear properties of discharge plasma sintered Cu‒15Ni‒8Sn/graphite self-lubricating composites. Tribology, 2024, 44(4): 509

    [13] 尹延国, 郑治祥, 马少波, 等. 温度对铜基自润滑材料减摩耐磨特性的影响. 中国有色金属学报, 2004(11): 1856 DOI: 10.3321/j.issn:1004-0609.2004.11.012

    Yin Y G, Zheng Z X, Ma S B, et al. Influence of temperature on friction and wear properties of Cu-matrix/graphite self-lubricating materials. Chin J Nonferrous Met, 2004(11): 1856 DOI: 10.3321/j.issn:1004-0609.2004.11.012

    [14]

    Joseph A, Akshay K S, Sajith V. Synergistic effect of ceria-zirconia nanoparticles and hBN nanosheets incorporation on the corrosion resistance of MoS2 solid lubricant coatings. Surf Coat Technol, 2023, 473: 130025 DOI: 10.1016/j.surfcoat.2023.130025

    [15]

    Ran X, Ren X, Zou H H, et al. Research on the mixing way and content of molybdenum disulfide with copper matrix self-lubricating composites. Adv Mater Res, 2014, 1015: 42

    [16] 谢鲲, 张惠, 张守清. 稀土氧化物弥散强化铜基复合材料的制备技术. 热加工工艺, 2016, 45(10): 25

    Xie K, Zhang H, Zhang S Q. Manufacture technology of rare earth oxides dispersion strengthened Cu-based composite. Therm Process Technol, 2016, 45(10): 25

    [17]

    Dalvand P, Raygan S, López G A, et al. Properties of rare earth added Cu–12wt% Al–3wt% Ni–0.6wt% Ti high temperature shape memory alloy. Mater Sci Eng A, 2019, 754: 370

    [18]

    Luo X, Zeng H, Yuan D W, et al. Effect of the rare earth element Ce on the microstructure, properties and thermal stability of Cu‒5Fe alloy. Mater Today Commun, 2023, 36

    [19]

    Lou W P, Li X Q, Wei S Z, et al. Effect of nano-Y2O3 on the microstructure and mechanical properties of Cu‒10W composites prepared by spark plasma sintering. Ceram Int, 2023, 49(22B): 36251

    [20] 李强, 马彪, 黄国杰, 等. 稀土在高强高导铜合金中的研究现状与展望. 热加工工艺, 2011, 40(2): 1 DOI: 10.3969/j.issn.1001-3814.2011.02.001

    Li Q, Ma B, Huang G J, et al. Research progress and prospects of effect of rare earth on high-strength- high-conductivity copper alloys. Therm Process Technol, 2011, 40(2): 1 DOI: 10.3969/j.issn.1001-3814.2011.02.001

    [21] 王天国, 覃群, 梁启超. 稀土La含量对铜基粉末冶金摩擦材料摩擦磨损性能的影响. 润滑与密封, 2016, 41(4): 49 DOI: 10.3969/j.issn.0254-0150.2016.04.010

    Wang T G, Qin Q, Liang Q C. Effect of rare earth element La content on trobological properties of copper-based powder metallurgy friction materials. Lubr Seal, 2016, 41(4): 49 DOI: 10.3969/j.issn.0254-0150.2016.04.010

    [22] 刘云贵, 朱绍严, 吴光进, 等. Y2O3增强铜基复合材料微观结构及性能的研究. 热加工工艺, 2020, 49(16): 97

    Liu Y G, Zhu S Y, Wu G J, et al. Study on microstructure and properties of Y2O3 reinforced copper matrix composites. Thermal Processing Technology, 2020, 49(16): 97

    [23]

    Chu H Y, Lin J F, Chiu Y C, et al. The tungsten density distribution and tribological performance analysis of carburized medium carbon steel with tungsten ion implantation. Adv Mater Res, 2011, 328-330: 906 DOI: 10.4028/www.scientific.net/AMR.328-330.906

    [24]

    Zhao L H, Wei X B, Li X G. The analysis on the tribological properties of CR/EPDM blends with chrome-plated steel under dry sliding. Adv Mater Res, 2013, 774-776: 99 DOI: 10.4028/www.scientific.net/AMR.774-776.99

    [25]

    Liang X M, Xing Y Z, Li L T, et al. An experimental study on the relation between friction force and real contact area. Sci Rep, 2021, 11(1): 20366 DOI: 10.1038/s41598-021-99909-2

    [26] 董思成, 钟利, 但敏, 等. 不同载荷及转速条件下MoS2涂层的摩擦磨损性能研究. 核聚变与等离子体物理, 2023, 43(1): 99

    Dong S C, Zhong L, Dan M, et al. Study on the frictional wear performance of MoS2 coatings under different load and speed conditions. Fusion Plasma Phys, 2023, 43(1): 99

    [27]

    Moazami-Goudarzi M, Nemati A. Tribological behavior of self-lubricating Cu/MoS2 composites fabricated by powder metallurgy. Trans Nonferrous Met Soc China, 2018, 28(5): 946 DOI: 10.1016/S1003-6326(18)64729-6

  • 期刊类型引用(1)

    1. 路跃,刘国齐,杨文刚,燕鹏飞,马渭奎,李红霞. 烧结助剂对锆酸钙材料性能的影响. 耐火材料. 2023(05): 407-411 . 百度学术

    其他类型引用(1)

图(12)  /  表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  14
  • PDF下载量:  36
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-01-08
  • 网络出版日期:  2024-02-29

目录

/

返回文章
返回