高级检索
李庆棠, 张宇辰, 吴海荣. 面向激光增材制造的(Ti,Nb)C复合碳化物颗粒增强Fe基材料组织特征与性能优化研究[J]. 粉末冶金技术. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020006
引用本文: 李庆棠, 张宇辰, 吴海荣. 面向激光增材制造的(Ti,Nb)C复合碳化物颗粒增强Fe基材料组织特征与性能优化研究[J]. 粉末冶金技术. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020006
Research on the Microstructural Characteristics and Performance Optimization of (Ti, Nb)C Composite Carbide Particle Reinforced Fe-based Material for Laser Additive Manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020006
Citation: Research on the Microstructural Characteristics and Performance Optimization of (Ti, Nb)C Composite Carbide Particle Reinforced Fe-based Material for Laser Additive Manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020006

面向激光增材制造的(Ti,Nb)C复合碳化物颗粒增强Fe基材料组织特征与性能优化研究

Research on the Microstructural Characteristics and Performance Optimization of (Ti, Nb)C Composite Carbide Particle Reinforced Fe-based Material for Laser Additive Manufacturing

  • 摘要: 本研究应用激光熔化沉积增材制造方法在Fe基材料中获得(Ti,Nb)C复合碳化物颗粒增强相,分析了(Ti, Nb)C/Fe组织特征、(Ti, Nb)C/Fe界面形成机理以及激光热输入对碳化物析出量的影响规律。在此基础上,通过调节加工参数优化了(Ti, Nb)C/Fe材料的力学性能。研究结果表明:材料物相主要由α-Fe基体以及(Ti, Nb)C复合碳化物增强颗粒组成;α-Fe晶粒和(Ti, Nb)C碳化物通过低指数晶面的结合获得了匹配良好的界面取向;同时发现,随着热输入的增大,材料中(Ti, Nb)C颗粒尺寸和面积比明显增加,材料强度随能量密度的增加呈先增后减的趋势。当Eeff=105 J·mm-2时,强度达到最大。

     

    Abstract: This research has applied laser melting deposition to obtain (Ti, Nb)C composite carbide particle reinforced phase in Fe-based materials. The microstructural characteristics and interface formation mechanism of (Ti, Nb)C/Fe have been analyzed in the study. Additionally, the effect of laser heat input on carbide precipitation has been investigated. Building on these results, the mechanical properties of the (Ti, Nb)C/Fe material have been optimized by adjusting processing parameters. The research results indicate that the material phase primarily consists of α-Fe matrix and (Ti, Nb)C composite carbide particle reinforcements. Moreover, with the increase in heat input, the size and area ratio of (Ti, Nb)C particles in the material significantly increase. The material strength demonstrates a trend of initially increasing and then decreasing with the rise in energy density. The peak strength is achieved at Eeff=105 J·mm-2.

     

/

返回文章
返回