Abstract:
6061 aluminum matrix composites added by 3% diamond particles (mass fraction) were prepared by laser powder bed fusion (LPBF). The microstructure, relative density, and tensile properties of the 3%diamond/6061 aluminum matrix composites were characterized and analyzed by optical microscope, scanning electron microscope, X-ray diffractometer, electronic densitometer, and electronic universal testing machine. Results show that the diamond reacts with the Al matrix, generating the needle-like Al
4C
3 phase, which deposits in the α-Al matrix. Those formed Al
4C
3 increases dislocations at the grain boundaries, enhances the materials’ strength, and delays the failure to fracture. The addition of diamond facilitates the elimination of thermal cracks, but the porous defects remain in 6061 aluminum alloys. The lower scanning speed extends the contact duration between the laser spot and the processed material, leading to the graphitization of the added diamond and the partial evaporation of the Al matrix. Thus, the internal defects exist, exhibiting the low densification of the composite (relative density 97%). The addition of diamond significantly increases the tensile strength of the LPBF formed diamond/6061 aluminum matrix composites, and the ultimate tensile strength reaches the maximum value of 244.2 MPa, the yield strength is 211.6 MPa, and the elongation is 2.1%, respectively, when the laser power is 350 W and the scanning speed is 800 mm·s
−1.