Study on mechanical properties of aluminum foam filled tubes with different bonding methods
-
摘要: 本文采用先进粉末冶金发泡法(简称“APCM”)制备了不同直径的泡沫铝元件,并将其按不同粘接方式无序填充到铝合金薄壁管中,获得了不同类型的APCM泡沫铝填充薄壁管复合结构(简称“填充管”)。通过万能试验机对填充管进行准静态压缩试验,研究了填充元件直径和粘接方式对填充管的力学性能及吸能效果的影响。结果表明,粘接方式对填充管的性能影响要比填充元件直径的更为显著。同种粘接方式下,填充泡沫元件直径为15mm的填充管压缩吸能效果最好;不同粘接方式下,发泡粘接填充管的压缩吸能效果最优,而粘接填充管的压缩吸能效果要优于不粘接填充管。Abstract: In this paper, different diameters of aluminum foam elements were prepared by advanced powder compact melting method (APCM), and then it was filled into aluminum alloy thin-walled tubes in a disorderly manner according to different bonding methods, and finally different types of composite structures of APCM aluminum foam-filled thin-walled tubes were obtained (filled tubes). The quasi-static compression test of the filled tubes was carried out by a universal testing machine, and the effects of the filling diameter and the bonding method on the mechanical properties and energy-absorbing effect of the filled tubes were investigated. The results show that the bonding method has a more significant effect on the performance of the filled tubes than that of the filling element diameter. Under the same bonding method, the compression energy absorption effect of the filled tubes with a filling element diameter of 15 mm is the best; under different bonding methods, the compression energy absorption effect of the foam bonded filled tubes is the best, while the compression energy absorption effect of the bonded filled tubes is better than that of the non-bonded filled tubes.
-
Keywords:
- APCM /
- Thin-walled metal tube /
- Compression performance /
- Composite structure /
- Energy absorption
-
粉末高温合金由于无宏观偏析、组织均匀细小、抗氧化、耐腐蚀,具有优良的综合力学性能,已成为制备先进航空发动机关键热端部件的优选材料[1–3]。随着航空工业的发展,航空发动机的功能不断完善,其中一些部件结构变得更加复杂,采用传统锻造成形工艺很难实现部件的整体制备,焊接连接逐渐成为制备复杂结构件的必要手段[4−5]。普通熔焊工艺的焊缝处为铸态组织,在焊后的冷却过程中易出现显微裂纹[6−7],尤其对于γ′强化相含量较高的粉末高温合金,该问题更加严重。固态扩散连接的惯性摩擦焊无需在真空或惰性气体保护条件下进行,更适合大尺寸复杂结构件的制备,因此,该种连接工艺成为制备大尺寸复杂结构件的方法之一[8]。
惯性摩擦焊接构件主要分三个区[9]:焊缝区(welding line zone,WLZ)、热影响区(heat affected zone,HAZ)和基体区(parent alloy zone,PAZ)。焊缝区宽度约1.6 mm,该区产生了强烈的热效应和塑变效应;热影响区与焊缝区毗连,宽度约1.6 mm;构件其他区域为基体区。惯性摩擦焊构件的焊缝区产生了较大的塑性变形和温度梯度,焊缝区的组织和应力状态与母材相比均发生了变化[10–11]。文献[12–14]对经惯性摩擦焊后FGH96合金焊接接头的组织演变和常温性能开展了研究,但其制备工艺偏重于等离子旋转电极雾化制粉+热等静压,并且只研究了焊接态试样的室温拉伸行为。本文是以氩气雾化制粉+热等静压+等温锻造工艺制备的FGH96合金为研究对象,分析了时效处理对该种粉末高温合金惯性摩擦焊焊缝区室温拉伸行为的影响,以揭示其失效机制,为评估经惯性摩擦焊粉末高温合金构件的使用性能提供参考。
1. 实验材料及方法
以国内广泛使用的第二代损伤容限型粉末高温合金FGH96为研究对象,其化学成分见表1。经等温锻造变形和标准热处理(固溶+时效)后,将FGH96合金预制坯加工成图1(a)所示的形状,并进行惯性摩擦焊,构件扩散连接效果如图1(b)所示。试验设备为美国MTI公司生产的300BX型惯性摩擦焊焊机,设备参数如下:转速0~3000 r·min−1,压力0~275600 Pa,转动惯量最大为9764.8 kg·m2。从连接后的构件上取样,以焊缝区为中心,加工成图2所示的板状拉伸试样。将上述拉伸试样分成两组,一组保持原状态(焊接态,as-welded state),另一组进行加热760 ℃、保温8 h的时效处理(post welded heat treatment,PWHT)。焊接态试样标注为S1-Y1和S1-Y4,时效处理试样(时效态)标注为S2-Y2和S2-Y4。结合数字图像关联技术(digital image correlation,DIC),对上述两组试样进行室温拉伸,并通过扫描电镜(scanning electron microscope,SEM)对断口和试样不同区域(焊缝区、热影响区和基体区)的组织进行观察。利用电子背散射衍射(electron backscattered diffraction,EBSD)对不同区域的晶粒取向差进行分析。
表 1 FGH96合金化学成分(质量分数)Table 1. Chemical composition of the FGH96 alloys% Co Cr Mo W Al Ti Nb C B Zr Ni 12.960 16.170 4.040 4.010 2.200 3.780 0.690 0.050 0.016 0.042 余量 2. 结果与讨论
图3为两组FGH96粉末高温合金惯性摩擦焊试样在室温拉伸过程中的应力–应变曲线,图4为对应的断裂位置与断口形貌。由图可知,两组试样在强度、塑性和断裂形貌三个方面表现出不同的行为特征。如图4(a)所示,焊接态试样的屈服强度比时效态试样低,但塑性较好,伸长率(δ5)可达11.5%,在热影响区处断裂,断口表现出明显的韧性断裂特征;如图4(b)所示,时效态试样在焊缝区断裂,断口比较平直,表现出一定的脆性断裂特征。
图5为两组FGH96粉末高温合金惯性摩擦焊试样在室温拉伸过程(持续阶段分别为25%、50%、75%和99%)工作段的应变分布情况。由图5(a)可见,在焊接态试样即将断裂前,最大应变量出现在热影响区,达19.0%,焊缝区应变量为16.0%,基体应变量最小,约为10.0%。时效态试样试验结果恰好相反,焊缝处和热影响区的应变量较小,仅有约0.6%,基体处的应变量最大,约为5.2%,如图5(b)所示。上述实验结果是多种强化方式的集中体现,本文将从以下方面对强化机制进行分析:(1)晶粒尺寸和晶界形貌;(2)能量状态;(3)γ′相的尺寸和微观化学成分;(4)显微硬度。
2.1 晶粒尺寸和晶界形貌
在惯性摩擦焊过程中,在高温、高压和高能量的共同作用下,晶粒在焊缝处发生了动态再结晶,但因冷却速度较快(约50 ℃·s−1)[15],晶粒来不及长大,故晶粒度较小,平均晶粒尺寸约为7 μm。在焊缝处高温作用下,热影响区晶粒在基体晶粒尺寸的基础上进一步长大,平均晶粒尺寸约为32 μm,使之成为晶粒尺寸最大的区域(基体平均晶粒尺寸为27 μm)。图6为焊接态和时效态试样晶粒尺寸对比,由于时效温度较低(760 ℃保温8 h),两种状态试样晶粒尺寸无显著变化,即晶粒度对两种试样强度和塑形的变化无显著影响。
焊接后,由于冷却速度较快,大γ′相来不及在晶界处析出,使焊缝处的晶界变得比较平直,如图7(a)所示;基体处的晶界则为“锯齿”形,如图7(b)所示。时效处理对平直晶界无显著影响。“锯齿”形晶界可抑制塑形变形中晶界间的相对滑动,有利于强度的提高,尤其是抗蠕变强度[16]。平直晶界成为焊接态试样焊缝处产生较大塑形变形的原因之一。时效处理后,在焊缝区沿晶界有连续或半连续的M23C6型碳化物析出,如图8所示。研究表明[17],M23C6型碳化物在晶界处若呈“点状”分布,则起强化晶界的作用,而连续析出的“网状”M23C6型碳化物将严重恶化晶界之间的界面结合强度,成为时效处理后焊缝处出现脆性断裂的主要原因。
2.2 能量状态
在惯性摩擦焊过程中,焊缝处产生较大的变形能,该能量以位错的形式储存在基体中,能量越高,位错密度越大。晶界处的位错将对基体强化产生较大的影响。晶粒中的亚晶界主要是由韧型位错的有序化形成,位错密度越高,亚晶粒之间的取向差越大,因此,可通过电子背散射衍射测量试样不同区域及时效处理前后亚晶粒取向差的变化,间接体现位错密度的变化情况。
图9为两种状态试样不同部位晶粒取向差的测试结果。对于焊接态试样,由于焊缝处产生了较大的塑性变形,位错密度(ρWLZ)最高,致使该处的晶体取向差最大,同时在细晶区晶界面积增大的叠加作用下,进一步提高了焊缝处的综合强化效果。在较高温度的影响下,热影响区通过晶粒长大使位错密度(ρHAZ)降低,且低于基体处位错密度(ρPAZ),即ρWLZ>ρPAZ>ρHAZ,这是焊接态试样在拉伸过程中未在焊缝处断裂的原因之一。对于时效态试样,通过回复或再结晶使焊缝处部分位错消失,位错密度降低,强化效果减弱,热影响区和基体处的位错密度基本不受时效处理的影响。
图 9 试样部位及时效处理对晶体取向差的影响:(a)焊接态焊缝区;(b)焊接态热影响区;(c)焊接态基体区;(d)时效态焊缝区;(e)时效态热影响区;(f)时效态基体区Figure 9. Influence of the sample zones and ageing treatment on the grain misorientation: (a) WLZ in as-welded state; (b) HAZ in as-welded state; (c) PAZ in as-welded state; (d) WLZ by PWHT; (e) HAZ by PWHT; (f) PAZ by PWHT2.3 γ′相尺寸和微观化学成分
在惯性摩擦焊过程中,焊缝处最高温度可达约1300 ℃[18],远远高于γ′相固溶温度(约1126 ℃),导致焊缝区和热影响区处的二次γ′相形成元素全部回溶到基体中。在焊接后的冷却过程中,三次γ′相从焊缝区和热影响区的基体中重新析出。较大的变形量和温度梯度为三次γ′相的析出提供了充分的驱动力,形核率较高,但由于冷却速度较快(约50 ℃·s−1),新析出的γ′相尺寸较小,平均尺寸约16 nm,远小于基体中二次γ′相尺寸(80~300 nm),经Image J软件分析,γ′相体积分数为25%,此时该区域的基体处于过饱和状态。由于新析出的三次γ′相尺寸较小,体积分数少(在平衡状态下,FGH96合金γ′相体积分数为35%),位错易于切过,对焊缝区和热影响区处的基体第二相强化作用减弱,成为焊接态试样在该处产生较大塑形变形的原因之一。在时效处理过程中,剩余γ′相形成元素从过饱和基体中补充析出,增加了γ′相的体积分数(提高至30%),其平均尺寸也由原来的16 nm提高至约20 nm,提高了上述两个区域γ′相的强化效果,如图10所示。
图 10 试样部位及时效处理对三次γ′相尺寸的影响:(a)焊接态焊缝区;(b)焊接态热影响区;(c)焊接态基体区;(d)时效态焊缝区;(e)时效态热影响区;(f)时效态基体区Figure 10. Influence of the sample zones and ageing treatment on the grain size of tertiary γ′: (a) WLZ in as-welded state; (b) HAZ in as-welded state; (c) PAZ in as-welded state; (d) WLZ by PWHT; (e) HAZ by PWHT; (f) PAZ by PWHTγ′/γ之间因错配度引起的晶格畸变将影响γ′相的强化效果,错配度越大,γ′相的强化效果越显著,而错配度的大小与两相组成元素的含量直接相关。研究表明,γ′相形成元素Al、Ti、Ta的原子半径分别比Ni原子半径大15%、18%和15%,γ相形成元素Cr和Mo的原子半径则比Ni原子半径小0.24%和9%。由于焊接后的冷却速度较快[3],γ′相形成元素Al、Ti和Ta来不及扩散到其中,使γ′相中包含较多的γ相形成元素Cr和Mo;相反,γ相中则含有较多γ′相形成元素。此时,焊缝处γ′/γ之间错配度小于基体处。对于焊接态试样,由于三次γ′相尺寸较小和体积分数较低,致使焊缝区和热影响区处γ′相的强化效果相对较弱;经时效处理后,时效态试样焊缝区和热影响区处γ′相形成元素有足够的时间扩散到其中,相应的γ′/γ之间错配度亦随之增加,在尺寸长大及其体积分数增加的共同作用下,提高了γ′相的综合强化效果,是时效态试样焊缝区和热影响区处强度升高的最重要原因。
2.4 显微硬度
如图11所示,从焊缝处起始,沿轴向对5条直线的显微硬度进行了测试,每条直线测试20个点。各线和各点之间的距离分别为2 mm和0.2 mm,同一位置取5点的平均值,结果如图12所示。硬度值变化是试样在时效处理前后因晶粒度、显微结构、位错密度、γ′相尺寸、体积分数及成分变化共同作用产生的综合强化效果的另一种体现形式,与强度变化具有直接的对应关系。对于焊接态试样,焊缝区和热影响区的显微硬度均低于基体,且在热影响区出现了最低点,说明该处的强度最弱,与试样在室温拉伸过程中焊缝区和热影响区出现较大的塑性应变和最终的断裂位置相吻合。经时效处理后,时效态试样焊缝区和热影响区的硬度均显著升高,并高于基体处,与该种状态试样在室温拉伸过程中基体处出现较大的塑性应变相吻合。时效态试样在位错强化作用降低的情况下,焊缝区和热影响区的强度仍然升高,说明γ′第二相强化是最重要的强化方式。基体处的强度水平基本不受时效处理的影响。
3. 结论
(1)对于焊接态试样,因为γ′相尺寸细小,体积分数较低,γ′/γ之间的错配度小,降低了γ′相的综合强化效果,导致焊缝区和热影响区的强度降低,塑性提高。由于热影响区的晶粒粗化,晶界强化效果减弱,且位错强化效果低于焊缝区,使热影响区成为整个试样强度的最薄弱点,使得在室温拉伸过程中试样从热影响区断裂,断口表现出一定的塑形特征。
(2)对于时效态试样,由于时效处理后γ′相粗化,体积分数提高,以及γ′/γ之间的错配度增加,提高了γ′相的综合强化效果,使焊缝区和热影响区的强度较焊接态试样显著提高。由于连续或半连续的M23C6型碳化物的析出,弱化了焊接区晶界的结合强度,导致在拉伸过程中试样从焊接区断裂,并出现了脆性断裂的特征。
-
期刊类型引用(1)
1. 钟韬,郭荣臻,林晓川,柳龙婷,王佳鑫,徐志强,郭世柏. 等离子烧结工艺对WC/Cr_3C_2/La_2O_3刀具材料力学性能的影响. 粉末冶金技术. 2024(06): 582-588 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 35
- HTML全文浏览量: 0
- PDF下载量: 3
- 被引次数: 1