高级检索

2025年专刊:X65/Inconel625双金属复合管微观组织与G28腐蚀性能研究

Research on Microstructure and G28 Corrosion Performance of X65/Inconel625 Bimetallic Composite Pipe

  • 摘要: 采用堆焊工艺制备X65/Inconel625双金属复合结构管,系统研究了各堆焊层的微观组织演变及成分分布特征,并揭示了在ASTM G28 A法(硫酸铁–硫酸腐蚀试验实验)中其对晶间腐蚀性能的影响规律。结果表明,Inconel625堆焊层呈现出典型的枝晶组织特征,在枝晶间存在大量的析出相,越靠近熔合线,枝晶间析出相数量越多。堆焊层中析出相分为两种,一种是尺寸较小的颗粒状析出相为(Nb,Ti)C碳化物,另一种则是尺寸较大且形状不规则的块状析出相为M6C相或者是Laves相。堆焊过程中X65钢中的Fe元素会向堆焊层中扩散,且随着堆焊层数的增加,枝晶间析出相的数量逐渐减少;同时,Fe元素含量沿堆焊层深度方向呈阶梯状分布Fe元素扩散到堆焊层中会稀释Inconel625中的其他元素,Fe含量的升高不仅会导致Ni、Cr质量分数下降,还会促进Nb、Mo在枝晶间偏聚,间接增加析出相数量。,在析出相与周围基体之间形成了宽度大概为1 μm的贫Cr区。硫酸铁–硫酸腐蚀实验中,G28试样中Fe含量与腐蚀速率呈正相关关系,高稀释率会促进析出相的形成。腐蚀源于析出相界面贫Cr区的电化学溶解,此处形成腐蚀电池加速溶解,析出相脱落形成腐蚀坑,随着腐蚀进行,腐蚀坑之间相互连接从而形成更为严重的枝晶间腐蚀。腐蚀速率与Fe含量呈正相关关系,对数据点进行拟合得到腐蚀速率与Fe质量分数关系y=0.8+0.0385x,其中y为腐蚀速率,x为Fe元素质量分数。通过腐蚀坑扩展及枝晶间连通加剧,最终引发严重枝晶间腐蚀。

     

    Abstract: X65/Inconel625 bimetallic composite pipes were fabricated using the overlay welding process. The microstructural evolution and compositional distribution characteristics across the various weld cladding layers were systematically investigated, and their influence on intergranular corrosion resistance in the ASTM G28 A method (ferric sulfate-sulfuric acid corrosion test) was elucidated. The results indicate that the Inconel 625 cladding layer exhibits a characteristic dendritic microstructure, with a significant amount of precipitates present in the interdendritic regions. The number of interdendritic precipitates increases closer to the fusion line. Two types of precipitates were identified within the cladding layer: small, granular precipitates identified as (Nb,Ti)C carbides, and larger, irregularly shaped blocky precipitates identified as either M?C phase or Laves phase.During the welding process, Fe diffuses from the X65 steel substrate into the cladding layer. This diffusion of Fe dilutes the concentration of other elements in the Inconel 625. The increase in Fe content not only leads to a decrease in the mass fractions of Ni and Cr, but also promotes the segregation of Nb and Mo in the interdendritic regions, indirectly increasing the number of precipitates. A Cr-depleted zone approximately 1 μm wide forms at the interface between these precipitates and the surrounding matrix. In the ferric sulfate-sulfuric acid corrosion test, corrosion initiates at the electrochemically active Cr-depleted zones surrounding the precipitates. At these sites, galvanic cells form, accelerating dissolution. The precipitates detach, forming corrosion pits. As corrosion progresses, these pits interconnect, leading to more severe intergranular corrosion. The corrosion rate shows a positive correlation with the Fe content. Fitting the data points yielded the relationship between corrosion rate (y) and Fe mass fraction (x): y = 0.8 + 0.0385x, where y is the corrosion rate (mm/a) and x is the mass fraction (%) of Fe.

     

/

返回文章
返回