高级检索

高温释氧诱导界面反应工程构筑FeSiCr/Cr2O3·SiO2·MnO软磁复合材料及电磁性能优化机制研究

Interfacial Reaction Engineering via High-Temperature Oxygen Release for Constructing FeSiCr/Cr2O3·SiO2·MnO Soft Magnetic Composites and Mechanistic Study of Electromagnetic Property Optimization

  • 摘要: FeSiCr基软磁复合材料(SMCs)因其高饱和磁化强度、优异直流偏置特性和良好环境稳定性,在电力电子领域具有重要应用价值。然而,传统的绝缘包覆工艺在高频、大功率条件下难以兼顾高磁导率和低损耗特性。为解决这一问题,本研究提出了一种基于高温释氧诱导的界面反应工程策略,通过乙酸锰前驱体在热压烧结过程中的分解,在FeSiCr软磁粉末表面构筑富氧空位(Vo)的MnO包覆层。结合界面反应动力学分析与热力学,揭示了热压烧结过程中MnO-Vo/FeSiCr界面反应形成Cr2O3·SiO2·MnO复合绝缘层的机理,并阐明了热压烧结温度(800-1100℃)对FeSiCr/Cr2O3·SiO2·MnO复合材料微观结构演变及电磁性能的影响规律。研究发现,MnO在不同的烧结温度下可选择性激活硅元素和铬元素的定向氧化,形成具有复合结构的Cr2O3·SiO2·MnO绝缘层。该独特界面结构使FeSiCr/Cr2O3·SiO2·MnO SMCs在30 mT,500 kHz下拥有低损耗(1282.3 kW/m3)、高磁导率(32.9)、高饱和磁化强度(190.7 emu/g)和高磁导率稳定性(71%@65Oe)。本研究建立的氧空位调控界面反应机制,为发展新一代高频低损耗FeSiCr基SMCs提供了新的材料设计范式。

     

    Abstract: FeSiCr-based soft magnetic composites(SMCs) have important applications in the field of power electronics due to their high saturation magnetization, excellent DC bias characteristics, and good environmental stability. However, the traditional insulation cladding process struggles to balance high permeability and low loss characteristics under high-frequency and high-power conditions. To address this challenge, this study proposes an interfacial reaction engineering strategy based on a high-temperature, oxygen-release-induced interfacial reaction. An MnO cladding layer with oxygen vacancies (Vo) was constructed on FeSiCr soft magnetic powders through the decomposition of a manganese acetate precursor during hot-press sintering. By combining kinetic analysis of interfacial reactions with thermodynamic principles, the mechanism of Cr2O3·SiO2·MnO composite insulating layer formation via MnO-Vo/FeSiCr interfacial reactions during hot-press sintering was revealed. The effect of sintering temperature (800-1100 °C) on microstructure evolution and electromagnetic properties of FeSiCr/Cr2O3·SiO2·MnO composites was systematically investigated. It was found that MnO promotes the directional oxidation of silicon and chromium at different sintering temperatures, forming a composite-structured Cr2O3·SiO2·MnO insulating layer. This unique interfacial structure enables the composites to exhibit low loss (1282.3 kW/m3), high permeability (μ = 32.9), high saturation magnetization (190.7 emu/g), and stable permeability (71% @ 65 Oe) at 30 mT and 500 kHz. The oxygen vacancy-modulated interfacial reaction mechanism established here provides a new paradigm for designing next-generation high-frequency, low-loss FeSiCr-based SMCs.

     

/

返回文章
返回