高级检索

热处理对镍基粉末高温合金扩散连接界面组织演变及性能的影响

Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface

  • 摘要: 采用金相显微镜、扫描电子显微镜、电子显微探针及高温拉伸测试的方法,研究了热处理对一种镍基粉末高温合金扩散连接界面组织演变及性能的影响。结果表明,在镍基粉末高温合金扩散连接时,基体中的Cr、Mo、Co、W、Al和Ti元素向界面扩散,导致界面处出现明显的连接影响区。Ni元素由电镀层向基体扩散,与Al和Ti元素发生反应,生成粗大γ'相,并呈“簇状”条带分布。经亚固溶处理和过固溶处理后,Cr、Mo、Co、W、Al、Ti和Ni元素进一步扩散,改变了连接影响区和γ'相“簇状”条带的宽度。650 ℃拉伸测试结果表明,扩散连接界面断裂面同时包含界面和基体,断口中存在大量韧窝及少量解离面,表现出韧性–解理的复合断裂模式。经亚固溶+时效处理后,界面强度显著提高,但界面塑性减低;经过固溶+时效处理后,界面强度有所下降,且界面塑性进一步降低。

     

    Abstract: Effect of the heat treatment on the microstructure evolution and mechanical properties of the a P/M Ni-based superalloy in the diffusion bonding interface was studied by the optical microscope (OM), scanning electron microscope (SEM), electron probe microanalysis (EPMA), and elevated temperature tensile test. The results show that Cr, Mo, Co, W, Al, and Ti elements diffuse from the alloy matrix to the interface, which leads to the appearance of the obvious bond-affected zone. Ni element diffuses from the electrodeposited coating to the matrix, and reacts with Al and Ti to form the coarse γ' phases. The coarse γ' phases are distributed as a cluster band in the interface. The width of the bond-affected zone and the cluster band are changed by the further diffusion of Cr, Mo, Co, W, Al, and Ti elements after the sub solution treatment and super solution treatment. The tensile test at 650 ℃ shows that the fracture location of diffusion bonding interface includes both the interface and the matrix. A large number of dimples and a small amount of dissociation surface in the fracture surface are found, showing a ductile-cleavage mixed fracture mode. The interfacial strength increases significantly, but the interfacial plasticity decreases after the sub solid solution and aging treatment. The interfacial strength decreases and the interfacial plasticity further decreases after the super solid solution and aging treatment.

     

/

返回文章
返回