高级检索

一个通用粉末压制方程及其统计分析验证

葛荣德

葛荣德. 一个通用粉末压制方程及其统计分析验证[J]. 粉末冶金技术, 1995, 13(2): 83-87.
引用本文: 葛荣德. 一个通用粉末压制方程及其统计分析验证[J]. 粉末冶金技术, 1995, 13(2): 83-87.
Ge Rongde. A GENERALIZED POWDER COMPACTION EQUATION AND STATISTICAL ANALYSIS ON ITS VALIDITY[J]. Powder Metallurgy Technology, 1995, 13(2): 83-87.
Citation: Ge Rongde. A GENERALIZED POWDER COMPACTION EQUATION AND STATISTICAL ANALYSIS ON ITS VALIDITY[J]. Powder Metallurgy Technology, 1995, 13(2): 83-87.

一个通用粉末压制方程及其统计分析验证

详细信息
    作者简介:

    葛荣德,1992年10月毕业于中南工业大学,取得工学博士学位,讲师。

A GENERALIZED POWDER COMPACTION EQUATION AND STATISTICAL ANALYSIS ON ITS VALIDITY

  • 摘要: 在分析现有各种粉末压制方程特征的基础上,提出了一个通用粉末压制微分方程:
    $\frac{{dD}}{{dp}}=\frac{{K(1-D){D^n}}}{{{p^m}}}$
    统计分析结果表明,当n值在0~4之间时,由该方程导出的一系列粉末压制方程的线性相关系数均大于0.99。将由n=0导出的方程与Balshin方程、Heckel方程及川北公夫方程进行了定量比较,表明该方程不仅具有更高的精度,而且具有更广泛的适用性。
    Abstract: Based on an analysis of the various compaction equations previously proposed, a generalized differential equation for the compection of powders has been proposed,which is expressed as follows:
    $\frac{{dD}}{{dp}}=\frac{{K(1-D){D^n}}}{{{p^m}}}$
    It has been proven by statistical analysis that the compaction equations derived from the above differential equation with the values of n from 0 to 4 give the correlation coefficients greater than 0.99 in all cases. The results of the quantitative comparison between the compaction equation derived from the value of n taken as zero and the most widely used compaction equations proposed respectively by Balshin, Heckel,and Kawakita have shown that a better quantitative description of the compaction of both metallic and non-metallic powders is given by the compaction equation proposed in the present work.
计量
  • 文章访问数:  201
  • HTML全文浏览量:  31
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-08-01
  • 网络出版日期:  2021-08-01

目录

    /

    返回文章
    返回