高级检索

球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响

吴开霞, 查五生, 陈秀丽, 万海毅, 安旭光

吴开霞, 查五生, 陈秀丽, 万海毅, 安旭光. 球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响[J]. 粉末冶金技术, 2023, 41(4): 338-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110014
引用本文: 吴开霞, 查五生, 陈秀丽, 万海毅, 安旭光. 球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响[J]. 粉末冶金技术, 2023, 41(4): 338-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110014
WU Kaixia, ZHA Wusheng, CHEN Xiuli, WAN Haiyi, AN Xuguang. Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys[J]. Powder Metallurgy Technology, 2023, 41(4): 338-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110014
Citation: WU Kaixia, ZHA Wusheng, CHEN Xiuli, WAN Haiyi, AN Xuguang. Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys[J]. Powder Metallurgy Technology, 2023, 41(4): 338-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110014

球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响

详细信息
    通讯作者:

    查五生: E-mail: 3212249282@qq.com

  • 中图分类号: TL341; TB333

Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys

More Information
  • 摘要:

    为进一步提高FeCrAl合金的力学性能,采用机械球磨和放电等离子烧结(spark plasma sintering,SPS)技术制备了纳米ZrC颗粒弥散强化FeCrAl(ZrC‒FeCrAl)合金,通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、氧含量分析、粒度分析、X射线衍射(X-ray diffraction,XRD)分析、硬度测试、拉伸性能测试等方法,研究了球磨时间对粉末特性及合金力学性能的影响。结果表明,延长球磨时间有利于粉末颗粒细化,但氧含量过高会导致烧结材料力学性能恶化。当球磨时间为30 h时,粉末平均粒径为72.88 μm,氧含量最低,为0.14%(质量分数);球磨30 h的ZrC‒FeCrAl合金具有较好的力学性能,其放电等离子烧结样品的极限抗拉强度、延伸率和维氏硬度分别为1046 MPa、12.1%和HV 349.9。结果证实,添加纳米ZrC可以有效强化FeCrAl合金,为其在耐事故燃料包壳材料中的应用提供了数据支撑。

    Abstract:

    To enhance the mechanical properties of FeCrAl alloys, the nano ZrC particle dispersion strengthened FeCrAl (ZrC‒FeCrAl) alloys were prepared by mechanical ball milling and spark plasma sintering (SPS). The effects of ball milling time on the powder characteristics and the alloy mechanical properties were investigated. Scanning electron microscope (SEM), transmission electron microscope (TEM), oxygen content analysis, particle size analysis, X-ray diffraction (XRD) analysis, hardness tests, and tensile property tests were carried out. The results show that, prolonging the milling time is conducive to the refinement of powder particles. However, the higher oxygen content may lead to the deterioration of mechanical properties after sintering. After milling for 30 h, the average particle size of the powders is about 72.88 μm, and the oxygen content (mass fraction) is the lowest, which is 0.14%. The ZrC‒FeCrAl alloys prepared by SPS show the better mechanical properties after milling for 30 h, the ultimate tensile strength, elongation, and Vickers hardness reach 1046 MPa, 12.1%, and HV 349.9, respectively. The results confirm that, the addition of nano ZrC particles can notably improve the strength of FeCrAl alloys, which is of great significance for the practical application in the accident resistant fuel cladding materials.

  • 图  1   拉伸试样尺寸示意图(单位:mm)

    Figure  1.   Dimension diagram of the tensile specimen (unit: mm)

    图  2   不同球磨时间粉末显微形貌:(a)0 h;(b)20 h;(c)30 h;(d)40 h

    Figure  2.   SEM images of the powders at different milling time: (a) 0 h; (b) 20 h; (c) 30 h; (d) 40 h

    图  3   不同球磨时间粉末的平均粒径

    Figure  3.   Average particle size of powders at different milling times

    图  4   不同球磨时间粉末氧质量分数

    Figure  4.   Oxygen mass fraction of the powders at different milling times

    图  5   原始FeCrAl粉末和不同球时间ZrC-FeCrAl粉末X射线衍射图谱

    Figure  5.   XRD patterns of the as-received FeCrAl powders and the ZrC-FeCrAl powders milled for the different time

    图  6   不同球磨时间下ZrC‒FeCrAl合金样品的维氏硬度

    Figure  6.   Vickers hardness of the ZrC‒FeCrAl alloy samples at different milling times

    图  7   不同球磨时间下ZrC‒FeCrAl合金样品的室温拉伸性能

    Figure  7.   Tensile properties of the ZrC‒FeCrAl alloy samples at different milling time at room temperature

    图  8   不同球磨时间下ZrC‒FeCrAl合金样品拉伸断口形貌:(a)0 h;(b)20 h;(c)30 h;(d)40 h

    Figure  8.   SEM images of tensile fracture surface of the ZrC‒FeCrAl alloy samples at different milling times: (a) 0 h; (b) 20 h; (c) 30 h; (d) 40 h

    图  9   球磨30 h的ZrC‒FeCrAl合金透射电镜形貌

    Figure  9.   TEM image of the ZrC‒FeCrAl alloys for 30 h milling

    图  10   纳米ZrC颗粒透射电镜相貌及能谱分析

    Figure  10.   TEM image and EDS pattern of the nano ZrC particles

    表  1   FeCrAl粉末化学成分(质量分数)

    Table  1   Chemical compositions of the FeCrAl powders %

    材料FeCrAlMoCNO
    FeCrAl13.174.101.860.010.030.04
    下载: 导出CSV

    表  2   不同球磨时间Fe(Cr)(110)峰位、晶格常数及半高宽

    Table  2   Peak position, lattice constant, and full width at half maximum of Fe (Cr)(110) at different milling time

    材料 时间 / h 峰位 / (°) 晶格常数 / Å 半高宽 / (°)
    FeCrAl044.3862.88390.192
    ZrC−FeCrAl2044.3772.88630.351
    3044.3532.88650.359
    4044.3492.88660.389
    下载: 导出CSV

    表  3   不同球磨时间下烧结ZrC‒FeCrAl合金样品的密度和相对密度

    Table  3   Density and relative density of the sintered ZrC−FeCrAl alloy samples at different milling times

    球磨时间 / h密度 / (g·cm‒3)相对密度 / %
    07.3099.7 
    207.2899.4
    307.2999.6
    407.2799.3
    下载: 导出CSV

    表  4   图8(d)中点1和2能谱分析

    Table  4   EDS analysis of point 1 and 2 in Fig. 8(d)

    测试点 元素 原子数分数 / % 质量分数 / %
    1Fe78.9280.64
    Cr19.5818.62
    Al1.500.74
    2Fe50.3566.74
    Cr12.2315.09
    Al13.148.41
    O15.655.94
    Mo0.521.19
    Si0.850.57
    C7.262.06
    下载: 导出CSV
  • [1] 贾文清, 刘向兵, 徐超亮, 等. 粉末冶金法制备核燃料包壳FeCrAl合金研究进展. 粉末冶金技术, 2022, 40(1): 22

    Jia W Q, Liu X B, Xu C L, et al. Research progress on FeCrAl alloys used for nuclear fuel cladding prepared by powder metallurgy. Powder Metall Technol, 2022, 40(1): 22

    [2]

    Duan Z, Yang H, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl Eng Des, 2017, 316: 131 DOI: 10.1016/j.nucengdes.2017.02.031

    [3]

    Pint B A, Unocic K A, Terrani K A. Effect of steam on high temperature oxidation behaviour of alumina-forming alloys. Mater High Temp, 2015, 32(1-2): 28 DOI: 10.1179/0960340914Z.00000000058

    [4]

    Kögler R, Anwand W, Richter A, et al. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy. J Nucl Mater, 2012, 427(1-3): 133 DOI: 10.1016/j.jnucmat.2012.04.029

    [5]

    Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J Nucl Mater, 2013, 440(1-3): 420 DOI: 10.1016/j.jnucmat.2013.05.047

    [6]

    Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501: 13 DOI: 10.1016/j.jnucmat.2017.12.043

    [7] 万海毅, 王辉, 查五生, 等. ATF用颗粒增强FeCrAl包壳材料的研究进展. 核动力工程, 2020, 41(6): 80 DOI: 10.13832/j.jnpe.2020.06.0080

    Wan H Y, Wang H, Zha W S, et al. Research progress of FeCrAl cladding materials strengthened by particles for ATF. Nucl Power Eng, 2020, 41(6): 80 DOI: 10.13832/j.jnpe.2020.06.0080

    [8]

    Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel. Acta Mater, 2011, 59(3): 992 DOI: 10.1016/j.actamat.2010.10.026

    [9]

    Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater, 2011, 417(1-3): 176 DOI: 10.1016/j.jnucmat.2010.12.300

    [10]

    Gong M, Zhou Z, Hu H, et al. Effects of aluminum on microstructure and mechanical behavior of 14Cr–ODS steels. J Nucl Mater, 2015, 462: 502 DOI: 10.1016/j.jnucmat.2014.12.079

    [11]

    Ding R, Wang H, Jiang Y, et al. Effects of ZrC addition on the microstructure and mechanical properties of Fe−Cr−Al alloys fabricated by spark plasma sintering. J Alloys Compd, 2019, 805: 1025 DOI: 10.1016/j.jallcom.2019.07.181

    [12]

    Wan H, An X, Kong Q, et al. Fabrication of ultrafine grained FeCrAl−0.6wt.% ZrC alloys with enhanced mechanical properties by spark plasma sintering. Adv Powder Technol, 2021, 32(5): 1380

    [13]

    Oh J M, Hong C I, Lim J W. Comparison of deoxidation capability on the specific surface area of irregular titanium powder using calcium reductant. Adv Powder Technol, 2019, 30(1): 1 DOI: 10.1016/j.apt.2018.08.023

    [14]

    Zhang M, Cheng Z, Li J, et al. Study on microstructure and mechanical properties of WC−10Ni3Al cemented carbide prepared by different ball-milling suspension. Materials, 2019, 12(14): 2224 DOI: 10.3390/ma12142224

    [15]

    Chen C L, Dong Y M. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe–Cr–Al ODS alloys. Mater Sci Eng A, 2011, 528(29-30): 8374 DOI: 10.1016/j.msea.2011.08.041

    [16]

    Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1-2): 1 DOI: 10.1016/S0079-6425(99)00010-9

    [17]

    Zhu W, Zhao C, Zhang Y, et al. Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry. Acta Mater, 2020, 188: 697 DOI: 10.1016/j.actamat.2020.02.039

    [18]

    Ponhan K, Tassenberg K, Weston D, et al. Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg−SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling. Ceram Int, 2020, 46(17): 26956 DOI: 10.1016/j.ceramint.2020.07.173

    [19]

    Menapace C, Cipolloni G, Hebda M, et al. Spark plasma sintering behaviour of copper powders having different particle sizes and oxygen contents. Powder Technol, 2016, 291: 170 DOI: 10.1016/j.powtec.2015.12.020

    [20]

    Xu H, Lu Z, Jia C, et al. Influence of mechanical alloying time on morphology and properties of 15Cr-ODS steel powders. High Temp Mater Processes, 2016, 35(5): 473 DOI: 10.1515/htmp-2014-0229

  • 期刊类型引用(1)

    1. 丁祥彬,周建明,邓玺,陈青山,王德正,侯硕,刘青松. 粉末冶金纳米TiC颗粒增强FeCrAlY基复合摩擦板材料的设计制备及性能研究. 摩擦学学报(中英文). 2025(01): 13-24 . 百度学术

    其他类型引用(0)

图(10)  /  表(4)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  62
  • PDF下载量:  59
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-18
  • 网络出版日期:  2023-01-11
  • 刊出日期:  2023-08-27

目录

    /

    返回文章
    返回