高级检索

水热法制备纳米氧化镁

鲁琴瑶, 张荣良, 陆添爱, 李聪, 曾加, 周琳凯, 高妍妍

鲁琴瑶, 张荣良, 陆添爱, 李聪, 曾加, 周琳凯, 高妍妍. 水热法制备纳米氧化镁[J]. 粉末冶金技术, 2023, 41(4): 350-355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100005
引用本文: 鲁琴瑶, 张荣良, 陆添爱, 李聪, 曾加, 周琳凯, 高妍妍. 水热法制备纳米氧化镁[J]. 粉末冶金技术, 2023, 41(4): 350-355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100005
LU Qinyao, ZHANG Rongliang, LU Tian’ai, LI Cong, ZENG Jia, ZHOU Linkai, Gao Yanyan. Preparation of nanometric magnesium oxide by hydrothermal method[J]. Powder Metallurgy Technology, 2023, 41(4): 350-355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100005
Citation: LU Qinyao, ZHANG Rongliang, LU Tian’ai, LI Cong, ZENG Jia, ZHOU Linkai, Gao Yanyan. Preparation of nanometric magnesium oxide by hydrothermal method[J]. Powder Metallurgy Technology, 2023, 41(4): 350-355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100005

水热法制备纳米氧化镁

基金项目: 江苏省研究生创新项目(KYCX20_3133)
详细信息
    通讯作者:

    张荣良: E-mail: zhangrljx19201@163.com

  • 中图分类号: TQ132.2

Preparation of nanometric magnesium oxide by hydrothermal method

More Information
  • 摘要:

    以氯化镁与氨水为原料,聚乙二醇为分散剂,用水热法制备出纳米氧化镁。通过X射线衍射仪和扫描电子显微镜表征产物的晶体结构、显微形貌和颗粒尺寸,探讨了MgCl2和氨水的摩尔比、反应温度、反应时间对前驱体的影响。对前驱体进行差热分析,研究前驱体煅烧温度和煅烧时间对纳米MgO的影响。结果表明:当MgCl2和氨水的摩尔比为1.0:2.5,反应温度为200 ℃,反应时间为3.0 h,前驱体煅烧温度为600 ℃,煅烧时间为2.0 h时,得到的纳米MgO颗粒呈圆盘状,分散均匀,基本无团聚现象,颗粒直径约为100 nm,厚度最小约为10 nm。

    Abstract:

    Nanometric magnesium oxide was prepared by hydrothermal method using magnesium chloride and ammonia water as the raw materials and polyethylene glycol as the dispersant. The crystal structure, microstructure, and particle size of the products were characterized by X-ray diffraction and scanning electron microscopy. The effects of molar ratio of MgCl2 to ammonia, reaction temperature, and reaction time on the precursors were discussed, and the influences of calcination temperature and calcination time on the nanometric magnesium oxide were investigated by the differential thermal analysis of the precursors. The results show that, when the molar ratio of MgCl2 to ammonia is 1.0:2.5, the reaction temperature is 200 ℃, the reaction time is 3.0 h, the precursor calcination temperature is 600 ℃, and the calcination time is 2.0 h, the MgO nanoparticles obtained are found to be disc-like and uniformly dispersed without agglomeration, showing a particle diameter of about 100 nm and a thickness of about 10 nm.

  • 图  1   不同MgCl2与氨水的摩尔比下制备的前驱体X射线衍射图

    Figure  1.   X-ray diffraction patterns of the precursors prepared at different molar ratios of MgCl2 to ammonia

    图  2   不同水热反应温度下制备的前驱体X射线衍射图

    Figure  2.   X-ray diffraction patterns of the precursors prepared at different hydrothermal reaction temperatures

    图  3   不同水热反应时间下制备的前驱体X射线衍射图

    Figure  3.   X-ray diffraction patterns of the precursors prepared under different hydrothermal reaction time

    图  4   前驱体热重-示差扫描量热分析曲线

    Figure  4.   TG-DSC curves of the precursors

    图  5   不同煅烧温度下制备产物的X射线衍射图

    Figure  5.   X-ray diffraction patterns of the products prepared at different calcination temperatures

    图  6   不同煅烧温度下产物显微形貌:(a)400 ℃;(b)500 ℃;(c)600 ℃;(d)700 ℃

    Figure  6.   SEM images of the products prepared at different calcination temperatures: (a) 400 ℃; (b) 500 ℃; (c) 600 ℃; (d) 700 ℃

    图  7   不同煅烧时间制备产物的X射线衍射图

    Figure  7.   X-ray diffraction patterns of the products prepared at different calcination times

    图  8   不同煅烧时间下产物显微形貌:(a)1.0 h;(b)2.0 h;(c)2.5 h;(d)3.0 h

    Figure  8.   SEM images of the products prepared under different calcination time: (a) 1.0 h; (b) 2.0 h; (c) 2.5 h; (d) 3.0 h

  • [1] 周红霞, 刘维俊, 朱发岩. 纳米氧化镁制备方法与进展. 盐业与化工, 2014, 43(7): 4

    Zhou H X, Liu W J, Zhu F Y. Introduction of the nanometer magnesia preparation methods. J Salt Chem Ind, 2014, 43(7): 4

    [2] 李萍. 球形纳米氧化镁的制备及其粒度影响因素. 化学研究与应用, 2019, 31(4): 747 DOI: 10.3969/j.issn.1004-1656.2019.04.026

    Li P. Preparation of spherical nano-MgO and its influencing factors on particle size. Chem Res Appl, 2019, 31(4): 747 DOI: 10.3969/j.issn.1004-1656.2019.04.026

    [3] 章波, 肖文灿, 徐浩, 等. 不同形貌纳米MgO的制备及其应用研究. 化工新型材料, 2017, 45(5): 43

    Zhang B, Xiao W C, Xu H, et al. Research on preparation and application of nano magnesium oxide with different morphologies. New Chem Mater, 2017, 45(5): 43

    [4]

    Zhao B, Wan X G, Song W H, et al. Nano-MgO particle addition in silver-sheathed (Bi,Pb)2Sr2Ca2Cu3O x tapes. Phys C, 2000, 337(1): 138

    [5] 黄蕾, 李殿卿, 林彦军, 等. 纳米MgO的可控制备及其对B.niger的杀灭性能. 科学通报, 2004, 22: 2294

    Huang L, Li D Q, Lin Y J, et al. Controllable preparation of nanometer MgO and its killing effect on B.niger. Sci Bull, 2004, 22: 2294

    [6]

    Zhou J J, Xia Y, Gong Y Y, et al. Efficient natural organic matter removal from water using nano-MgO coupled with microfiltration membrane separation. Sci Total Environ, 2020, 7(11): 103

    [7] 朱亚先, 曾人杰, 刘新锦, 等. MgO纳米粉制备及表征. 厦门大学学报(自然科学版), 2001(6): 1256

    Zhu Y X, Zeng R J, Liu X J, et al. Preparation and characterization of MgO nanopowders. J Xiamen Univ Nat Sci, 2001(6): 1256

    [8]

    Sathyamoorthy R, Mageshwari K, Mali S S, et al. Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram Int, 2013, 39: 323 DOI: 10.1016/j.ceramint.2012.06.028

    [9] 管洪波, 王培, 赵璧英, 等. 低温固相法制备高比表面积的纳米MgO. 催化学报, 2006(9): 793

    Guan H B, Wang P, Zhao B Y, et al. Preparation of high specific surface area nano-MgO. J Catal, 2006(9): 793

    [10] 金艳花, 潘旭杰, 代如梅, 等. 碳酸铵直接沉淀法制备纳米氧化镁的研究. 无机盐工业, 2014, 46(7): 33 DOI: 10.3969/j.issn.1006-4990.2014.07.009

    Jin Y H, Pan X J, Dai R M, et al. Study on preparation of nano-MgO by direct precipitation of ammonium carbonate. Inorg Salt Ind, 2014, 46(7): 33 DOI: 10.3969/j.issn.1006-4990.2014.07.009

    [11] 温艳珍, 薛永强, 崔子祥, 等. 均匀沉淀法制备不同粒径的纳米MgO. 粉末冶金工业, 2014, 24(3): 1 DOI: 10.3969/j.issn.1006-6543.2014.03.001

    Wen Y Z, Xue Y Q, Cui Z X, et al. Preparation of nano-MgO with different particle size by homogeneous precipitation method. Powder Metall Ind, 2014, 24(3): 1 DOI: 10.3969/j.issn.1006-6543.2014.03.001

    [12]

    Pampuch R, Tomaszewski H, Haberko K. Hot-pressing of active magnesia. Ceram Int, 1975, 1(2): 81 DOI: 10.1016/0390-5519(75)90011-3

    [13]

    Chhor K, Bocquet J F, Pommier C. Syntheses of submicron magnesium oxide powders. Mater Chem Phys, 1995, 40(1): 63 DOI: 10.1016/0254-0584(94)01452-M

    [14] 刘振. 溶胶-凝胶法由菱镁矿制备纳米氧化镁. 应用化工, 2012, 41(5): 837

    Liu Z. Preparation of nano-MgO from magnesite by sol-gel method. Appl Chem, 2012, 41(5): 837

    [15] 罗竹溪, 陈虎魁, 康芳, 等. 离子液体辅助水热法制备纳米氧化镁. 化学工程师, 2016, 30(12): 1

    Luo Z X, Chen H K, Kang F, et al. Preparation of nano-MgO by ionic liquid-assisted hydrothermal method. Chem Eng, 2016, 30(12): 1

    [16] 曲阳, 梁松岩, 余俊, 等. 合成氧化镁纳米片及其催化合成查尔酮性能. 黑龙江大学自然科学学报, 2019, 36(2): 196

    Qu Y, Liang S Y, Yu J, et al. Synthesis of MgO nanosheets for catalyzing synthesis chalcone. J Nat Sci Heilongjiang Univ, 2019, 36(2): 196

    [17] 孙天昊, 郝素菊, 蒋武锋, 等. 纳米氧化铁的制备及形貌分析. 粉末冶金技术, 2021, 39(1): 76

    Sun T H, Hao S J, Jiang W F, et al. Preparation and morphology analysis of nano-sized iron oxide. Powder Metall Technol, 2021, 39(1): 76

图(8)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  173
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 网络出版日期:  2021-04-11
  • 刊出日期:  2023-08-27

目录

    /

    返回文章
    返回