高级检索

40%SiCp/Al复合材料热变形行为及热加工图

郝世明, 刘鹏茹, 庞晋安, 彭名卿, 吴浩展, 袁浩然

郝世明, 刘鹏茹, 庞晋安, 彭名卿, 吴浩展, 袁浩然. 40%SiCp/Al复合材料热变形行为及热加工图[J]. 粉末冶金技术, 2023, 41(6): 564-571, 576. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080007
引用本文: 郝世明, 刘鹏茹, 庞晋安, 彭名卿, 吴浩展, 袁浩然. 40%SiCp/Al复合材料热变形行为及热加工图[J]. 粉末冶金技术, 2023, 41(6): 564-571, 576. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080007
HAO Shiming, LIU Pengru, PANG Jin’an, PENG Mingqing, WU Haozhan, YUAN Haoran. Hot deformation behavior and hot processing map of 40%SiCp/Al composites[J]. Powder Metallurgy Technology, 2023, 41(6): 564-571, 576. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080007
Citation: HAO Shiming, LIU Pengru, PANG Jin’an, PENG Mingqing, WU Haozhan, YUAN Haoran. Hot deformation behavior and hot processing map of 40%SiCp/Al composites[J]. Powder Metallurgy Technology, 2023, 41(6): 564-571, 576. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080007

40%SiCp/Al复合材料热变形行为及热加工图

基金项目: 国家自然科学基金资助项目(52171138);河南省自然科学基金资助项目(182300410260);河南科技大学大学生研究训练计划资助项目(2020185,2021046)
详细信息
    通讯作者:

    郝世明: E-mail: haoshm@haust.edu.cn

  • 中图分类号: GB331

Hot deformation behavior and hot processing map of 40%SiCp/Al composites

More Information
  • 摘要:

    采用Glebble-1500D热模拟试验机,在350~500 ℃变形温度、0.01~10.00 s−1应变速率条件下进行等温压缩变形,研究40%SiCp/Al复合材料(体积分数)的热加工性能。通过热变形真应力-真应变曲线分析复合材料的热变形规律,建立材料本构方程,利用动态材料模型计算出应变速率敏感指数和功率耗散效率系数,绘制出功率耗散图、失稳图及二维加工图。结果表明,应变速率和变形温度显著影响流变应力,应变速率一定时,变形温度升高,流变应力减小;在相同的变形温度下,随应变速率的增加,流变应力也随之升高。根据加工图可知,在高温高应变速率条件下,材料的功率耗散效率系数大,说明该变形区域发生了组织转变;应变对失稳区域和加工区域影响不大,功率耗散效率系数随应变的增加而增大。40%SiCp/Al复合材料建议热加工条件为变形温度436~491 ℃,应变速率0.04~9.97 s−1

    Abstract:

    The hot workability of the 40%SiCp/Al composites (volume fraction) was studied by isothermal compression deformation on Glebble-1500D thermal simulated test machine at the deformation temperature of 350~500 ℃ under the strain rate of 0.01~10.00 s−1. The thermal deformation of the composites was analyzed according to the true stress-strain curves, and the constitutive equation was established. The strain rate sensitivity index and power dissipation efficiency factor were calculated by dynamic material model, and the power dissipation diagram, instability diagram, and two-dimensional processing map were obtained. The results show that, the strain rate and deformation temperature significantly affect the flow stress. Under the same strain rate, the flow stress decreases with the increase of deformation temperature; at the same deformation temperature, the flow stress increases with the increase of strain rate. According to the processing map, the power dissipation efficiency factor is large under the condition of high temperature and high strain rate, illustrating the microstructure transformation in the deformation region. The strain has little effect on the instability region and processing region, and the power dissipation efficiency factor increases with the increase of strain. The recommended hot working conditions for the composite is as the deformation temperature of 436~491 ℃ and the strain rate of 0.04~9.97 s−1.

  • 图  1   40%SiCp/Al复合材料微观组织

    Figure  1.   Microstructure of the 40%SiCp/Al composites

    图  2   不同应变速率下40%SiCp/Al复合材料的真应力-应变曲线:(a)0.01 s−1;(b)0.10 s−1;(c)1.00 s−1;(d)10.00 s−1

    Figure  2.   True stress-strain curves of the 40%SiCp/Al composites at different strain rates: (a) 0.01 s−1; (b) 0.10 s−1; (c) 1.00 s−1; (d) 10.00 s−1

    图  3   真应变为0.1时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $-σ;(b)ln$ \dot \varepsilon $-lnσ;(c)ln$ \dot \varepsilon $-ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/T

    Figure  3.   Relationship between stress, stress rate, and temperature at true strain of 0.1: (a) ln$ \dot \varepsilon $-σ; (b) ln$ \dot \varepsilon $-lnσ; (c) ln$ \dot \varepsilon $-ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T

    图  4   真应变为0.3时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $-σ;(b)ln$ \dot \varepsilon $-lnσ;(c)ln$ \dot \varepsilon $-ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/T

    Figure  4.   Relationship between stress, stress rate, and temperature at true strain of 0.3: (a) ln$ \dot \varepsilon $-σ; (b) ln$ \dot \varepsilon $-lnσ; (c) ln$ \dot \varepsilon $-ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T

    图  5   真应变为0.5时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $-σ;(b)ln$ \dot \varepsilon $-lnσ;(c)ln$ \dot \varepsilon $-ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/T

    Figure  5.   Relationship between stress, stress rate, and temperature at true strain of 0.5: (a) ln$ \dot \varepsilon $-σ; (b) ln$ \dot \varepsilon $-lnσ; (c) ln$ \dot \varepsilon $-ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T

    图  6   不同真应变线下lnZ与ln[sinh(ασ)]关系:(a)0.1;(b)0.3;(c)0.5

    Figure  6.   Relationship between lnZ and ln[sinh(ασ)] at the different true strain: (a) 0.1; (b) 0.3; (c) 0.5

    图  7   不同真应变下实验值与计算值分析与对比:(a)0.1;(b)0.3;(c)0.5

    Figure  7.   Analysis and comparison of the experimental and calculated values at the different true strain: (a) 0.1; (b) 0.3; (c) 0.5

    图  8   应变为0.1时复合材料功率耗散图(a)、失稳图(b)和二维加工图(c)

    Figure  8.   Power dissipation diagram (a), instability diagram (b), and two-dimensional processing map (c) of the composites at the strain of 0.1

    图  9   应变为0.3时复合材料功率耗散图(a)、失稳图(b)和二维加工图(c)

    Figure  9.   Power dissipation diagram (a), instability diagram (b), and two-dimensional processing map (c) of the composites at the strain of 0.3

    图  10   应变为0.5时复合材料功率耗散图(a)、失稳图(b)和二维加工图(c)

    Figure  10.   Power dissipation diagram (a), instability diagram (b), and two-dimensional processing map (c) of the composites at the strain of 0.5

    表  1   不同应变量时材料常数计算结果

    Table  1   Calculation results of the material constants at the different strains

    εβn1nMα / MPa−1lnAQ / (kJ·mol−1)
    0.10.1344088.9737136.6562572882.6490.01543824.52115157.288
    0.30.1335528.3875076.1496673088.2240.01626324.97749157.903
    0.50.1344078.9737156.6018922865.2100.01524524.62439157.273
    下载: 导出CSV
  • [1] 郑晶, 贾志华, 马光. 碳化硅颗粒增强铝基复合材料的研究进展. 钛工业进展, 2006, 23(6): 13

    Zheng J, Jia Z H, Ma G. Progress in research of SiC particle reinforced Al-based composites. Titanium Ind Prog, 2006, 23(6): 13

    [2] 王莹, 刘向东. 碳化硅颗粒增强铝基复合材料的现状及发展趋势. 铸造设备研究, 2003(3): 20

    Wang Y, Liu X D. Present status and development trend of SiCp/Al composites. Foundry Equip Technol, 2003(3): 20

    [3] 刘洋, 李雷, 历长云, 等. 高强高导铝−石墨烯复合材料研究进展. 粉末冶金技术, 2021, 39(4): 358

    Liu Y, Li L, Li C Y, et al. Research progress on high-strength and high-conductivity Al-graphene composites. Powder Metall Technol, 2021, 39(4): 358

    [4] 周艳华. 碳化硅颗粒增强铝基复合材料主要制备技术. 工具技术, 2017, 51(4): 7

    Zhou Y H. Main preparation processes and research status of SiC particle reinforced aluminum matrix composites. Tool Eng, 2017, 51(4): 7

    [5] 王明, 郭丹, 丁成富, 等. 碳化硅颗粒增强铝基复合材料加工研究进展. 机电产品开发与创新, 2016, 29(6): 76

    Wang M, Guo D, Ding C F, et al. Research progress of machining of SiC particle reinforced aluminum matrix composites. Dev Innov Mach Electr Prod, 2016, 29(6): 76

    [6] 魏少华, 聂俊辉, 刘彦强, 等. 等温锻造对碳化硅颗粒增强铝基复合材料断裂韧性的影响. 稀有金属材料与工程, 2017, 46(11): 3464

    Wei S H, Nie J H, Liu Y Q, et al. Effect of isothermal forging on fracture toughness of SiC particle reinforced aluminum matrix composites. Rare Met Mater Eng, 2017, 46(11): 3464

    [7]

    Gui M C, Wang D B, Wu J J, et al. Microstructure and mechanical properties of cast (Al-Si)/SiCp composites produced by liquid and semisolid double stirring process. Mater Sci Technol, 2013, 16(5): 556

    [8]

    Cui Y, Geng L, Yao Z K, et al. A new advance in the development of high-performance SiCp/Al composite. J Mater Sci Technol, 1997(3): 227

    [9] 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战. 中国工程科学, 2020, 22(2): 79 DOI: 10.15302/J-SSCAE-2020.02.012

    Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading. Strategic Study CAE, 2020, 22(2): 79 DOI: 10.15302/J-SSCAE-2020.02.012

    [10]

    Rawal S P. Metal-matrix composites for space applications. JOM, 2001, 53(4): 14 DOI: 10.1007/s11837-001-0139-z

    [11]

    Miracle D B. Metal matrix composites from science to technological significance. Compos Sci Technol, 2005, 65(15-16): 2526 DOI: 10.1016/j.compscitech.2005.05.027

    [12]

    Shao J C, Xiao B L, Wang Q Z, et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20vol.% SiCp/2024Al composite. Mater Sci Eng A, 2010, 527(29): 7865

    [13]

    Rajamuthamil selvan M, Ramanathan S. Effect of silicon carbide volume fraction on the hot workability of 7075 aluminium-based metal-matrix composites. Int J Adv Manuf Technol, 2013, 67(5-8): 1711 DOI: 10.1007/s00170-012-4604-3

    [14]

    Ghazani M S, Eghbali B. Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel. Int J Miner Metall Mater, 2021, 28(11): 1799 DOI: 10.1007/s12613-020-2163-4

    [15]

    Sivakesavam O, Prasad Y V R K. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression: a study with processing map. Mater Sci Eng A, 2003, 362(1-2): 118 DOI: 10.1016/S0921-5093(03)00296-X

    [16]

    Xiao B L, Huang Z Z, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites. Acta Metall Sin, 2019, 55(1): 59

  • 期刊类型引用(0)

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  2081
  • HTML全文浏览量:  88
  • PDF下载量:  53
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-10-11
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2023-12-27

目录

    /

    返回文章
    返回