高级检索

数值模拟在粉末压制细观分析中的应用与发展

陈新宇, 李奋强, 蒋继帅

陈新宇, 李奋强, 蒋继帅. 数值模拟在粉末压制细观分析中的应用与发展[J]. 粉末冶金技术, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
引用本文: 陈新宇, 李奋强, 蒋继帅. 数值模拟在粉末压制细观分析中的应用与发展[J]. 粉末冶金技术, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
Citation: CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001

数值模拟在粉末压制细观分析中的应用与发展

基金项目: 福建省自然科学基金资助项目(2021J011212)
详细信息
    通讯作者:

    李奋强: E-mail: lfq@xmut.edu.cn

  • 中图分类号: TF124

Application and development of numerical simulation on mesoscopic analysis of powder compaction

More Information
  • 摘要:

    数值模拟技术已经成为研究粉末压制过程的重要手段。研究人员运用离散单元法(discrete element method,DEM)从细观角度研究粉末颗粒的力学行为,分析力链特性及力链演化过程,揭示细观结构对宏观性质的影响;使用多粒子有限元法(multi-particle finite element method,MPFEM)从颗粒层面对不同粉末的压制变形机理进行研究。本文对离散单元法和多粒子有限元法两种数值模拟方法在粉末压制中的应用及发展进行综述,总结了多粒子有限元法在粉末压制数值模拟中的难点,分析得到在动态载作用下对粉末力链演化规律及颗粒致密机理的研究可作为未来探索方向的展望。

    Abstract:

    In recent years, numerical simulation technology has become an important method to study the powder compaction process. The discrete element method (DEM) is used to study the mechanical behavior of powder particles from the mesoscopic perspective, analyze the characteristics and evolution process of force chain, and reveal the influence of the mesoscopic structure on the macroscopic properties. The multi-particle finite element method (MPFEM) is used to study the compression deformation mechanisms of the different powders at the particle level. The application and development of DEM and MPFEM on the powder compaction were reviewed in this paper, and the difficulties of MPFEM used in powder compaction were summarized.It was concluded that the study on the evolution law of powder force chain and the mechanism of particle densification under the dynamic loading could be regarded as a prospect for future exploration

  • 流动温压工艺是在温压工艺的基础上,结合粉末注射成形工艺的优点而发展的一种近净成形技术[13]。粉末在温压状态下的流动性是获得高性能粉末冶金零件的关键因素,粉末中添加的黏结剂在加热条件下转变为黏流态,黏流态的黏结剂在压制力的作用下带动粉末流动,从而大大提高了粉末填充能力和成型性,因此流动温压工艺既具有温压工艺成形高密度零件的特点[4],又能像注射成形一样成形形状复杂的零件,是一项极具潜力的新技术[5]

    黏结剂一般由低分子物质、高分子物质及必要的添加剂组成,通常加入质量分数为1%~6%。虽然黏结剂的加入能够提高粉末的流动性,但烧结过程中,高分子黏结剂的分解会在烧结坯内部留下大量孔隙,孔隙的存在会降低零件烧结密度和力学性能,因此对脱脂工艺进行研究非常有必要[6]。流动温压工艺黏结剂用量远低于注射成形工艺,通常不需要专门的脱脂工序,直接采用热脱脂的方法可以实现脱脂、烧结一体化。目前对粉末热脱脂的研究多集中在注射成形上,赵利刚和周时宇等[78]研究认为只要脱除质量分数4%左右的黏结剂,试样中就会形成初始孔隙,随着新的孔隙在内表面不断形成,试样内部形成连通孔隙。李永,陈慧和郑军君等[911]发现流动温压工艺热脱脂关键在于控制低温阶段升温速度。

    本文使用石蜡基聚合物作为铁基粉末流动温压工艺的黏结剂,采用热重分析法(thermogravimetric analysis,TGA)研究黏结剂在N2气氛下的脱脂过程,通过微分法计算脱脂反应动力学参数,确定热脱脂升温速率,制订合理的脱脂和烧结工艺。

    实验原料选用山东莱芜奥星生产的316L水雾化铁粉,混合金属粉末成分与粒度见表 1所示。采用石蜡基聚合物作为黏结剂,各组元熔点和成分见表 2

    表  1  实验用金属粉末的成分与粒度
    Table  1.  Composition and particle sizes of the raw powders
    粉末 粒度/μm 质量分数/%
    水雾化铁粉 ≤147 78.5
    羟基铁粉 5 20.0
    还原钼粉 ≤75 0.5
    石墨粉 ≤75 1.0
    下载: 导出CSV 
    | 显示表格
    表  2  黏结剂组元热解温度和成分
    Table  2.  Thermal characteristic and composition of binder components
    组元 熔点/ ℃ 热分解温度/ ℃ 质量分数/ %
    聚酰胺(PA) 170.6 316.6~500.5 65.0
    聚乙烯蜡(PE) 113.1 192.3~480.9 17.5
    普通石蜡(PW) 64.7 180.1~307.0 17.5
    下载: 导出CSV 
    | 显示表格

    将金属粉末和黏结剂按各自成分混合好,再加入适量的溶剂,将黏结剂(质量分数6%)和金属粉末(质量分数94%)进行湿混,直到溶剂差不多完全挥发为止;将湿混后的粉末在50 ℃下干燥2 h,防止黏结剂固化;将干燥好的粉末研磨,过100目筛;将过筛后的预混合粉末再次混合1 h得到预混合粉末。利用十字腔模具在CMT 5105型万能材料拉伸机上将预混合粉末压制成十字生坯,压制温度163 ℃,压制速度250 mm/min,压制压力600 MPa。

    利用Netszh STA449热分析仪对生坯试样和纯黏结剂体系分别进行热重分析,得到相应的热重–微商热重曲线(thermogravimetry–derivative thermogravimetry,TG–DTG);采用排水法来测定试样生坯和烧结坯密度;烧结收缩率根据国家标准GB/T5159-1985计算;利用光学显微镜进行微观结构分析,试样观察面选择与压制方向垂直的表面。

    对纯黏结剂和生坯进行热重分析,升温速率分别为2、5、8、11 ℃·min-1,得到相应的热重曲线如图 1所示。图 1(a)是纯黏结剂在升温速率为11 ℃·min-1下的热重曲线,可以观察到曲线明显分为两个失重阶段,第1阶段是140~340 ℃,失重率为30.28%,对应的是低熔点石蜡和部分聚乙烯蜡的分解;第2段的热解区间为340~480 ℃,主要是高熔点组元聚酰胺以及部分聚乙烯蜡的分解,其失重率为66.33%。分析可见,纯黏结剂失重区间主要集中在高温脱脂段,低温脱脂段组元失重少,分解平缓,分解温度区间大。这种特点有利于保持脱脂坯形状,较少或不产生脱脂缺陷。

    图  1  热重–微商热重分析曲线:(a)纯黏结剂;(b)含质量分数6%黏结剂的生坯
    Figure  1.  TG–DTG curves: (a) binder; (b) green compaction with 6% binder by mass

    图 1(b)是添加质量分数6%黏结剂的生坯在升温速率为11 ℃·min-1下热重曲线,与纯黏结剂热重曲线比较可见,生坯曲线的失重比较平稳,有利于控制缺陷的产生。生坯最大失重速率出现在400 ℃附近,与其对应的纯黏结剂的最大失重速率出现在460 ℃附近,大约提前了60 ℃。这种差异起因于生坯中金属粉末的加入有效降低了黏结剂分子间的联结程度,起到了分散、隔离与催化的作用,使得生坯黏结剂的脱除通道较纯黏结剂更为畅通。

    对生坯不同升温速率下的热重曲线进行一阶微分处理,可以得到相应的微商热重(derivative thermogravimetry,DTG)曲线,如图 2示。微商热重曲线反映了脱脂速率的瞬时变化情况,随着升温速率的增加,相应的瞬时脱脂速率上升,曲线峰谷向高温方向移动,但曲线的形状没有发生变化,且每条曲线都有两个峰谷对应两个分解阶段。

    图  2  不同升温速率下生坯的微商热重曲线
    Figure  2.  DTG curves of green compaction at different heating rates

    脱脂过程可以看作是聚合物热解反应气体逸出的过程,同时生坯的内部质量和传热可以忽略不计。一般反应速率微分方程如式(1)所示[12]

    $$\frac{{{\rm{d}}\alpha }}{{{\rm{d}}t}} = f(\alpha ) \cdot k(T)$$ (1)

    式中:f(α)为机理函数的微分形式,α为转化率,t为时间,T为温度,k(T)为温度T下的反应速率常数。

    根据阿累尼乌斯方程(Arrhenius)得出金属坯体脱脂反应速率方程,如式(2)所示[13]

    $$ k(T) = A \cdot \exp \left( { - E/RT} \right) $$ (2)

    式中:A为指数前因子(频率因子),min-1Ea为激活能,kJ·mol-1R为普适气体常数,R = 8.314 [J·(mol·K)-1]。

    由式(1)与式(2)结合Coats–Redfren方法[1415]得出金属坯体脱脂反应动力学方程,如式(3)所示。

    $$\ln \left[ {k(T)} \right] = \ln \left( {\frac{{AR}}{{\beta {E_{\rm{a}}}}}} \right) - \frac{{{E_{\rm{a}}}}}{{RT}}$$ (3)

    式中:β为升温速率,℃·min-1,实验中为常数。

    图 2为不同升温速率下生坯的微商热重曲线,有图可知,瞬时脱脂速率波动较大的区域对应两个分解阶段:第1阶段470~660 ℃(低温阶段),对应着普通石蜡的分解;第2阶段660~760 ℃(高温阶段),对应着高分子组元的分解。利用作图法分别得到两区域不同速率下的ln[k(T)]–T-1关系曲线,如图 3所示,通过拟合直线的截距和斜率可以计算得到指前因子(A)、激活能(Ea)以及拟合系数(r2),结果见表 3所示。

    图  3  Arrhenius方程ln[k(T)]与T-1关系:(a)第1阶段470~660 ℃;(b)第2阶段660~760 ℃
    Figure  3.  Plot of ln[k(T)] and T-1: (a) 470~660 ℃ in stage 1; (b) 660~760 ℃ in stage 2
    表  3  生坯脱脂过程动力学参数
    Table  3.  Kinetic parameters of green compact with diffeent heating rates
    热解阶段 升温速率,β/(℃·min-1) 激活能,Ea/(kJ·mol-1) 指前因子,A / min-1 拟合系数,r2
    第1阶段(低温阶段) 2 44.3 5.82×106 0.9954
    5 31.3 0.96×106 0.9970
    8 34.8 3.23×106 0.9916
    11 31.6 1.94×106 0.9954
    第2阶段(高温阶段) 5 56.3 1.45×108 0.9914
    8 70.2 4.65×109 0.9937
    11 72.7 1.14×1010 0.9938
    下载: 导出CSV 
    | 显示表格

    表 3可以看出,激活能在31.3~72.7 kJ·mol-1范围内,指前因子在0.96×106~1.14×1010 min-1。脱脂第1阶段的激活能整体上低于第2阶段,说明低分子组元更易脱除,故应严格控制升温速率,避免低分子组元脱除过快而产生大量气体形成鼓泡等缺陷。激活能随指前因子的增加而增加,表明反应对温度比较敏感[16]

    流动温压工艺的脱脂与烧结是一起进行的,本文仅探讨脱脂环节。保证脱脂质量的关键是控制第1阶段的升温速率,第1阶段低分子组元的脱除速率太快,通过蒸发、分解产生的气体无法及时从坯块内排出,当气体膨胀产生的力大于粉末颗粒之间的结合力时,就会导致缺陷的产生,图 4所示为脱脂坯出现的开裂、鼓泡等典型脱脂缺陷。根据表 3中生坯脱脂过程动力学参数,确定合理的热脱脂升温速率,改进脱脂工艺,图 5是优化后的脱脂工艺曲线。

    图  4  脱脂缺陷:(a)裂纹;(b)鼓泡
    Figure  4.  Defects induced by debinding: (a) cracks; (b) blisters
    图  5  优化后热脱脂工艺
    Figure  5.  Optimized debinding process

    在氮气气氛下采用优化后的热脱脂工艺对试样进行脱脂,然后在1300 ℃烧结1 h,随后冷却至室温得到完整烧结坯。测量和计算得到生坯密度、烧结坯密度和烧结收缩率,结果如表 4所示。由表 4可知,生坯经烧结后密度提高,存在一定的烧结收缩现象,且试样横向尺寸的烧结收缩率略大于轴向尺寸的烧结收缩率。烧结坯轴向部分受竖直方向压制力直接作用于粉末形成,横向部分是依靠粉末的流动挤压而形成的。随着压制力逐渐增大,轴向部分粉末发生机械咬合,如果粉末流动性不够理想,传递到横向部分的压力甚少,粉末无法充分变形,坯体内部存在较多孔洞,导致在烧结过程中横向部分有较大的收缩空间,且横向部分烧结后的孔隙数量比轴向部分多,如图 6烧结坯轴向上端和横向左端金相组织所示。利用线切割将试样切开分别测量各部分密度,结果如图 7所示,轴向部分的整体密度要高于横向部分,横向部位左右端密度最低。这与横向部分组织中含有较多的孔隙有关,可以通过适当提高黏结剂质量分数和粉末流动性来改善整体烧结密度。

    表  4  生坯密度、烧结坯密度和烧结收缩率
    Table  4.  Green density, sintered part density, and sintered part shrinkages
    生坯密度/ (g·cm-3) 烧结密度/ (g·cm-3) 烧结收缩率/%
    轴向方向 轴向直径 横向方向 横向直径
    5.971 6.720 -5.83 -0.27 -6.10 -0.31
    下载: 导出CSV 
    | 显示表格
    图  6  烧结坯不同部位金相组织:(a)轴向上端;(b)横向左端
    Figure  6.  Microstructures of sintered parts at different location: (a) axial upper-side; (b) lateral left-side
    图  7  烧结坯的密度分布(单位:g·cm-3
    Figure  7.  Density distribution of sintered parts (unit in g·cm-3)

    (1)黏结剂热重分析表明,脱脂过程分为两个明显阶段:第1阶段470~660 ℃(低温阶段),对应着普通石蜡的分解;第2阶段660~760 ℃(高温阶段),对应着高分子组元的分解

    (2)采用微分法计算脱脂过程动力学相关参数,建立脱脂过程动力学机理方程。结果表明,激活能在31.3~72.7 kJ·mol-1范围内,指前因子在0.96×106~1.14×1010 min-1;脱脂过程第1阶段的激活能整体上低于第2阶段,由此可得,保证脱脂质量的关键是控制第1阶段的升温速率。

    (3)根据生坯脱脂过程动力学参数,经反复试验确定得到最佳脱脂工艺:室温~340 ℃,升温速率2 ℃/min,保温30 min;340~500 ℃,升温速率4 ℃/min,保温60 min,随后进入烧结环节。

    (4)生坯经烧结后密度整体提高,且试样横向尺寸的烧结收缩率略大于轴向尺寸烧结收缩率。试样烧结坯横向部分的整体密度要低于轴向部分,横向部位左右端密度最低,微观组织呈现较多孔隙。

  • 图  1   颗粒摩擦系数与轴向应变关系[10]

    Figure  1.   Relationship between the particle friction coefficient and axial strain[10]

    图  2   轴向应变与力链演变[17]:(a)轴向应变0%;(b)轴向应变4%;(c)轴向应变7%;(d)轴向应变13%

    Figure  2.   Evolution of force chain with the different axial strain[17]: (a) axial strain 0; (b) axial strain 4%; (b) axial strain 7%; (b) axial strain 13%

    图  3   力链特性的变化[21]:(a)数目;(b)长度;(c)强度;(d)准直性

    Figure  3.   Changes of the force chain properties[21]: (a) number; (b) length; (c) strength; (d) collimation

    图  4   压实压力和Fe/Al粉末粒径比(RFe/RAl)对压坯相对密度的影响[30]

    Figure  4.   Influence of compaction pressure and Fe/Al powder size ratio (RFe/RAl) on the relative density of compact[30]

    图  5   压实压力和TiC/316L粉末粒径比(R316L/RTiC)对压坯相对密度的影响[32]

    Figure  5.   Influence of compaction pressure and TiC/316L powder size ratio (R316L/RTiC) on the relative density of compact[32]

    图  6   NaCl/Al混合粉末的压实压力和相对密度实验数据和仿真结果[33]

    Figure  6.   Experimental data and simulation results of compaction pressure and relative density for the NaCl/Al mixture powders[33]

    图  7   不同温度下相对密度与压力关系[37]

    Figure  7.   Relationship between relative density and pressure at the different temperatures[37]

    图  8   总应变能随压力和温度变化关系[37]

    Figure  8.   Relationship of the total strain energy, pressure, and temperature[37]

    图  9   随机结构压制过程[38]

    Figure  9.   Random packing compressing process[38]

    图  10   屈服面和粘结强度函数图[40]

    Figure  10.   Yield surfaces as the function of cohesion strength[40]

    图  11   孔隙边缘节点Von Mises应力分布[42]

    Figure  11.   Von Mises stress distribution at the pore edge nodes[42]

    图  12   应力释放前后节点Von Mises应力[42]

    Figure  12.   Nodal Von Mises stress before and after stress release[42]

    图  13   单位质量能量和摩擦系数对回弹率的影响[28]

    Figure  13.   Influence of unit mass energy and friction coefficient on springback[28]

    图  14   卸压后回弹初始模型[28]

    Figure  14.   Initial model of resilience after unload[28]

    图  15   W−Cu颗粒模压模拟和实验验证[27]

    Figure  15.   Molding simulation and experimental verification of W−Cu particles[27]

    图  16   致密化过程中粒子的平均等效应变[27]

    Figure  16.   Average equivalent strain of particles during densification[27]

  • [1] 孙其诚, 刘晓星, 张国华, 等. 密集颗粒物质的介观结构. 力学进展, 2017, 47: 263 DOI: 10.6052/1000-0992-16-021

    Sun Q C, Liu X X, Zhang G H, et al. The mesoscopic structures of dense granular materials. Adv Mech, 2017, 47: 263 DOI: 10.6052/1000-0992-16-021

    [2] 尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49

    You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49

    [3] 郭岩岩, 历长云, 冀国良, 等. 粉末致密化过程数值模拟研究现状. 材料导报, 2022, 36(18): 174 DOI: 10.11896/cldb.20080161

    Guo Y Y, Li C Y, Ji G L, et al. Research status of numerical simulation of powder densification process. Mater Rep, 2022, 36(18): 174 DOI: 10.11896/cldb.20080161

    [4] 孙其诚, 王光谦. 颗粒物质力学导论. 北京: 科学出版社, 2009

    Sun Q C, Wang G Q. Introduction to the Mechanics of Particulate Matter. Beijing: Science Press, 2009

    [5] 颜士伟, 黄尚宇, 胡建华, 等. 数值仿真技术在粉末冶金零件制造中的应用及研究进展. 粉末冶金技术, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    [6]

    Sun Q C, Jin F, Liu J G. Understanding force chains in dense granular materials. Int J Mod Phys B, 2010, 24(29): 5743 DOI: 10.1142/S0217979210055780

    [7]

    Guo P J. Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech, 2012, 7: 41 DOI: 10.1007/s11440-011-0154-3

    [8] 孟凡净, 刘华博, 花少震, 等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析. 应用力学学报, 2021, 38(3): 1286 DOI: 10.11776/cjam.38.03.B057

    Meng F J, Liu H B, Hua S Z, et al. Analysis of friction mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing. Chin J Appl Mechs, 2021, 38(3): 1286 DOI: 10.11776/cjam.38.03.B057

    [9] 张炜, 谈健君, 张帅, 等. 基于颗粒物质力学的铁粉末压制中摩擦特性对力链演化影响. 摩擦学学报, 2022, 42(2): 386

    Zhang W, Tan J J, Zhang S, et al. Influence of tribological characteristics on the evolution of force chains in ferrous powder compaction based on granular matter theory. Tribology, 2022, 42(2): 386

    [10]

    Zhang N, Zhang S, Tan J J, et al. Correlation mechanism between force chains and friction mechanism during powder compaction. Chin Phys B, 2022, 31(2): 486

    [11]

    Zhang W, Zhang S, Tan J, et al. Investigation on the friction mechanism and its relation to the force chains during powder compaction. J Phys Soc Jpn, 2020, 89(12): 124602 DOI: 10.7566/JPSJ.89.124602

    [12]

    Zhang W, Zhang S, Tan J, et al. Relation between force chain quantitative characteristics and side wall friction behaviour during ferrous powder compaction. Granular Matter, 2022, 24(3): 86 DOI: 10.1007/s10035-022-01244-4

    [13]

    Peters J F, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material. Phys Rev E, 2005, 72: 041307

    [14]

    Bassett D S, Owens E T, Porter M A, et al. Extraction of force-chain network architecture in granular materials using community detection. Soft Matter, 2015, 11: 2731 DOI: 10.1039/C4SM01821D

    [15]

    Huang Y M, Daniels K E. Friction and pressure dependence of force chain communities in granular materials. Granular Matter, 2016, 18: 85 DOI: 10.1007/s10035-016-0681-6

    [16] 王飞, 刘焜, 王伟. 颗粒的堵塞行为对单向压制过程的影响. 应用力学学报, 2014, 31(3): 400 DOI: 10.11776/cjam.31.03.D028

    Wang F, Liu K, Wang W. Simulation of jamming phenomenon of granular matter under single-action pressing process. Chin J Appl Mech, 2014, 31(3): 400 DOI: 10.11776/cjam.31.03.D028

    [17] 张炜, 周剑, 于世伟, 等. 双轴压缩下颗粒物质接触力与力链特性研究. 应用力学学报, 2018, 35(3): 530

    Zhang W, Zhou J, Yu S W, et al. Investigation on contact force and force chain of granular matter in biaxial compression. Chin J Appl Mech, 2018, 35(3): 530

    [18] 张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98

    Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98

    [19]

    Zhang L R, Nguyen N G H, Lambert S, et al. The role of force chains in granular materials: from statics to dynamics. Eur J Environ Civ Eng, 2017, 21(7-8): 874 DOI: 10.1080/19648189.2016.1194332

    [20] 张炜, 周剑, 于世伟, 等. 基于颗粒物质力学的粉末高速压制过程中应力传递分布分析. 应用力学学报, 2018, 35(1): 154

    Zhang W, Zhou J, Yu S W, et al. Investigation of the stress transmission characterization in highvelocity powder compaction based on mechanics of granular materials. Chin J Appl Mech, 2018, 35(1): 154

    [21] 张炜, 周剑, 于世伟, 等. 离散元法金属粉末高速压制过程中力链特性量化研究. 机械工程学报, 2018, 54(10): 85 DOI: 10.3901/JME.2018.10.085

    Zhang W, Zhou J, Yu S W, et al. Quantitative investigation on force chains of metal powder in high velocity compaction by discrete element method. J Mech Eng, 2018, 54(10): 85 DOI: 10.3901/JME.2018.10.085

    [22] 王海陆, 刘军, 林立, 等. 基于离散元的不同粒径配比粉末压制相对密度与力链分析. 粉末冶金技术, 2021, 39(6): 490

    Wang H L, Liu J, Lin L, et al. Compacting relative density and force chain analysis of powders with different particle sizes and proportions based on discrete element. Powder Metall Technol, 2021, 39(6): 490

    [23]

    Zhang L, Wang Y J, Zhang J. Force-chain distributions in granular systems. Phys Rev E, 2014, 89(1): 012203 DOI: 10.1103/PhysRevE.89.012203

    [24]

    Gendelman O, Pollack Y G, Procaccia I, et al. What determines the static force chains in stressed granular media? Phys Rev Lett, 2016, 116(7): 078001

    [25]

    Iikawa N, Bandi M M, Katsuragi H. Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys Rev Lett, 2016, 116(12): 128001 DOI: 10.1103/PhysRevLett.116.128001

    [26] 李达. 铁基粉末高速压制的数值模拟分析[学位论文]. 合肥: 合肥工业大学, 2014

    Li D. Numerical Simulation Analysis of High-Speed Compaction of Iron-Based Powder [Dissertation]. Hefei: Hefei University of Technology, 2014

    [27]

    Peng K F, Pan H, Zheng Z J, et al. Compaction behavior and densification mechanisms of Cu−W composite powders. Powder Technol, 2021, 382: 478 DOI: 10.1016/j.powtec.2021.01.013

    [28]

    Zhou J, Zhu C Y, Zhang W, et al. Experimental and 3D MPFEM simulation study on the green density of Ti–6Al–4V powder compact during uniaxial high velocity compaction. J Alloys Compd, 2020, 817: 153226 DOI: 10.1016/j.jallcom.2019.153226

    [29]

    Han P, An X Z, Zhang Y X, et al. Particulate scale MPFEM modeling on compaction of Fe and Al composite powders. Powder Technol, 2017, 314: 69 DOI: 10.1016/j.powtec.2016.11.021

    [30]

    Han P, An X Z, Wang D F, et al. MPFEM simulation of compaction densification behavior of Fe−Al composite powders with different size ratios. J Alloys Compd, 2018, 741: 473 DOI: 10.1016/j.jallcom.2018.01.198

    [31]

    Huang F, An X Z, Zhang Y X, et al. Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders. Powder Technol, 2017, 314: 39 DOI: 10.1016/j.powtec.2017.03.017

    [32]

    Wang D F, An X Z, Han P, et al. Particulate scale numerical investigation on the compaction of TiC-316L composite powders. Math Prob Eng, 2020, 2020(Pt.6): 5468076.1

    [33]

    Feng Y B, Mei D Q, Wang Y C. Cohesive zone method based multi particle finite element simulation of compaction densification process of Al and NaCl laminar composite powders. J Phy Chem Solids, 2019, 134: 35 DOI: 10.1016/j.jpcs.2019.05.020

    [34]

    Xu L, Wang Y S, Li C Y, et al. MPFEM simulation on hot-pressing densification process of SiC particle/6061Al composite powders. J Phy Chem Solids, 2021, 159: 110259 DOI: 10.1016/j.jpcs.2021.110259

    [35]

    Li M, Lim C V S, Zou R P, et al. Multi-particle FEM modelling on hot isostatic pressing of Ti6Al4V powders. Int J Mech Sci, 2021, 196: 106288 DOI: 10.1016/j.ijmecsci.2021.106288

    [36]

    Jia Q, An X Z, Zhao H Y, et al. Compaction and solid-state sintering of tungsten powders: MPFEM simulation and experimental verification. J Alloys Compd, 2018, 750: 341 DOI: 10.1016/j.jallcom.2018.03.387

    [37]

    Zou Y, An X Z, Zou R P. Investigation of densification behavior of tungsten powders during hot isostatic pressing with a 3D multi-particle FEM approach. Powder Technol, 2020, 361: 297 DOI: 10.1016/j.powtec.2019.08.014

    [38]

    Zhang Y X, An X Z, Zhang Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction. Appl Phys A, 2015, 118: 1015 DOI: 10.1007/s00339-014-8861-x

    [39]

    Zou Y, An X Z, Jia Q, et al. Three-dimensional MPFEM modelling on isostatic pressing and solid phase sintering of tungsten powders. Powder Technol, 2019, 354: 854 DOI: 10.1016/j.powtec.2019.07.013

    [40]

    Loidolt P, Ulz M H, Khinast J. Modeling yield properties of compacted powder using a multi-particle finite element model with cohesive contacts. Powder Technol, 2018, 336: 426 DOI: 10.1016/j.powtec.2018.06.018

    [41]

    Loidolt P, Ulz M H, Khinast J. Prediction of the anisotropic mechanical properties of compacted powders. Powder Technol, 2019, 345: 589 DOI: 10.1016/j.powtec.2019.01.048

    [42]

    Zhou L W, Han P, Liu K, et al. Particulate scale multiparticle finite element method modeling on the 2D compaction and release of copper powder. Math Prob Eng, 2019, 2019(Pt.23): 5269302.1

    [43]

    Güner F, Cora Ö N, Sofuoğlu H. Numerical modeling of cold powder compaction using multi particle and continuum media approaches. Powder Technol, 2015, 271: 238 DOI: 10.1016/j.powtec.2014.11.008

    [44]

    Güner F, Cora Ö N, Sofuoğlu H. Effects of friction models on the compaction behavior of copper powder. Tribol Int, 2018, 122: 125 DOI: 10.1016/j.triboint.2018.02.022

    [45]

    Güner F, Sofuoğlu H. Effects of process parameters on copper powder compaction process using multi-particle finite element method. IOP Conf Ser Mater Sci Eng, 2018, 295: 012027 DOI: 10.1088/1757-899X/295/1/012027

图(16)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  983
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2024-08-27

目录

/

返回文章
返回