高级检索

Mo–Re合金粉末冷等静压成形规律

何浩然, 刘奇, 薄新维, 王小宇, 姚志远, 韩校宇, 王于金

何浩然, 刘奇, 薄新维, 王小宇, 姚志远, 韩校宇, 王于金. Mo–Re合金粉末冷等静压成形规律[J]. 粉末冶金技术, 2025, 43(1): 102-108. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060011
引用本文: 何浩然, 刘奇, 薄新维, 王小宇, 姚志远, 韩校宇, 王于金. Mo–Re合金粉末冷等静压成形规律[J]. 粉末冶金技术, 2025, 43(1): 102-108. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060011
HE Haoran, LIU Qi, BO Xinwei, WANG Xiaoyu, YAO Zhiyuan, HAN Xiaoyu, Wang Yujin. Forming regularity of Mo–Re alloy powders by cold isostatic pressing[J]. Powder Metallurgy Technology, 2025, 43(1): 102-108. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060011
Citation: HE Haoran, LIU Qi, BO Xinwei, WANG Xiaoyu, YAO Zhiyuan, HAN Xiaoyu, Wang Yujin. Forming regularity of Mo–Re alloy powders by cold isostatic pressing[J]. Powder Metallurgy Technology, 2025, 43(1): 102-108. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060011

Mo–Re合金粉末冷等静压成形规律

基金项目: 重庆英才创新领军人才项目(CQYC20200301185);重庆市基础研究与前沿探索面上项目(cstc2019jcyj-msxmX0795);北碚区科技人才与自主创新专项(2022-12)
详细信息
    通讯作者:

    刘奇: E-mail: 1607439632@qq.com

  • 中图分类号: TF124

Forming regularity of Mo–Re alloy powders by cold isostatic pressing

More Information
  • 摘要:

    研究了Mo–47.5%Re(质量分数)球磨混料合金粉与等离子球化合金粉的冷等静压成形,利用“黄培云双自然对数方程”拟合压制参数,并分析压制压力与压坯密度的关系。结果表明,在长径比较大的模具中进行冷等静压压制,球磨混料合金粉与等离子球化合金粉均表现为压坯轴向收缩率大于径向收缩率。等离子球化合金粉压制后,压坯完整,未开裂,压坯密度沿轴向变化较少,芯部密度略低于两端密度。球磨混料合金粉压制后,压坯呈竹节状断裂,压坯密度沿轴向存在较大变化,芯部密度显著低于两端密度。等离子球化合金粉硬化指数(m)略高于球磨混料合金粉,其压制模量(M)低于球磨混料合金粉,说明等离子球化合金粉硬化趋势更大,相较于球磨混料合金粉更易压制。

    Abstract:

    The cold isostatic pressing of Mo–47.5%Re alloy powders (mass fraction) mixed by ball milling and plasma spheroidization was compared and analyzed. The compression parameters were fitted and the relationship between pressing pressure and billet density was analyzed by Huang Peiyun’s double logarithmic pressing theory. The results show that the axial shrinkage of the compacts mixed by both ball milling and plasma spheroidization is greater than that of the radial shrinkage after cold isostatic pressing in the mold with large length/diameter ratio. The billets pressed by plasma spheroidization alloy powders are complete and uncracked, the density changes less along the axial direction, and the core density is slightly lower than that at both ends. The billets pressed by ball milling alloy powders are broken like bamboo joint, the density varies greatly along the axial direction, and the core density is significantly lower than that at both ends. The harding exponent of plasma spheroidization alloy powders is slightly higher than that of ball milling alloy powders, while the pressing modulus (M) is lower than that of ball milling alloy powders, which means the hardening tendency of plasma spheroidization alloy powders is greater.

  • 图  1   球磨混料合金粉制备工艺

    Figure  1.   Preparation technology of the ball milling mixed alloy powders

    图  2   原料钼粉以及钼铼合金混合粉微观形貌:(a)原料钼粉;(b)球磨混料合金粉;(c)等离子球化合金粉

    Figure  2.   SEM images of the raw molybdenum powders and the molybdenum rhenium alloy mixed powders: (a) raw molybdenum powders; (b) ball milling mixed alloy powders; (c) plasma spheroidization alloy powders

    图  3   钼铼合金粉区间粒度分布

    Figure  3.   Particle size distribution of the molybdenum rhenium alloy powders

    图  4   钼铼合金粉压制效果对比

    Figure  4.   Pressing effect of the molybdenum rhenium alloy powders

    图  5   钼铼合金压坯沿轴向密度变化

    Figure  5.   Density variation of the molybdenum rhenium alloy billets in axial direction

    图  6   压坯密度随压制压力的变化

    Figure  6.   Variation of the billet density with the pressing pressure

    图  7   理论与实际压力–密度对比

    Figure  7.   Theoretical and actual values of the pressure and density

    表  1   钼铼合金粉松装密度与粉末流动性

    Table  1   Loose packing density and powder fluidity of the molybdenum rhenium alloy powders

    粉体类型松装密度 / (g·cm−3)流动性 / [s·(50 g)−1]
    球磨混料合金粉3.513.8
    等离子球化合金粉5.26.5
    下载: 导出CSV

    表  2   钼铼合金压坯收缩率

    Table  2   Billet shrinkage of the molybdenum rhenium alloy billets

    粉体类型径向收缩率 / %轴向收缩率 / %
    球磨混料合金粉2635
    等离子球化合金粉1522
    下载: 导出CSV

    表  3   压制压力与压坯密度关系

    Table  3   Relation between pressing pressure and billet density

    压制压力 / MPa压坯密度 / (g·cm−3)
    球磨混料合金粉等离子球化合金粉
    1306.288.61
    1606.708.87
    1907.089.08
    2207.399.27
    2507.729.45
    下载: 导出CSV

    表  4   压制压力与压坯密度线性回归分析结果

    Table  4   Linear regression analysis results of the pressing pressure and billet density

    粉体类型回归方程相关系数硬化指数(m压制模量(M)/ MPa
    球磨混料合金粉y=0.18+1.71x0.9981.71151.36
    等离子球化合金粉y=0.08+2.65x0.9902.65120.23
    下载: 导出CSV
  • [1] 刘仁智, 安耿, 杨秦莉, 等. 钼−铼−镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429

    Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo−Re−La alloy. Powder Metall Technol, 2018, 36(6): 429

    [2] 曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料研究进展. 粉末冶金技术, 2023, 41(4): 307

    Zeng Y, Sun Y J, An G, et al. Research progress of Mo−Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307

    [3]

    Hiraoka Y, Ogusu T, Yoshizawa N. Decrease of yield strength in molybdenum by adding small amounts of Group VIII elements. J Alloys Compd, 2004, 381(1-2): 192 DOI: 10.1016/j.jallcom.2004.03.112

    [4]

    Asimow P D, Sun D Y, Ahrens T J. Shock compression of preheated molybdenum to 300 GPa. Phys Earth Planet Inter, 2008, 174(1-4): 302

    [5] 陈畅, 汪明朴, 谭望, 等. 粉末冶金方法制备钼铼合金的研究. 材料导报, 2008, 22(5): 74 DOI: 10.3321/j.issn:1005-023X.2008.05.018

    Chen C, Wang M P, Tan W, et al. Study on preparation of molybdenum-rhenium alloys of powder metallurgy methods. Mater Rev, 2008, 22(5): 74 DOI: 10.3321/j.issn:1005-023X.2008.05.018

    [6] 黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. Atom Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    [7]

    Schneibel J H, Felderman E J, Ohriner E K. Mechanical properties of ternary molybdenum-rhenium alloys at room temperature and 1700 K. Scr Mater, 2008, 59(2): 131 DOI: 10.1016/j.scriptamat.2008.02.057

    [8] 郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10): 1871

    Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace. Rare Met Mater Eng, 2011, 40(10): 1871

    [9] 杨毅超, 林小辉, 李延超, 等. ODS强化钼铼合金的再结晶温度研究. 中国钼业, 2020, 44(3): 46

    Yang Y C, Lin X H, Li Y C, et al. Recrystallization temperature of oxide dispersion strengthened Mo–Re alloy. China Molybd Ind, 2020, 44(3): 46

    [10] 谭拴斌, 郭让民, 杨升红, 等. 钼铼合金的结构和性能. 稀有金属, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028

    Tan S B, Guo R M, Yang S H, et al. Structure and properties of molybdenum-rhenium alloys. China J Rare Met, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028

    [11] 陈畅, 汪明朴, 郭明星, 等. 粉末冶金法制备Mo–43wt%Re合金退火行为的研究. 材料热处理学报, 2007, 28(6): 54 DOI: 10.3969/j.issn.1009-6264.2007.06.013

    Chen C, Wang M P, Guo M X, et al. Study on annealing behaviors of Mo–43wt%Re alloy prepared by powder metallurgy. Trans Mater Heat Treat, 2007, 28(6): 54 DOI: 10.3969/j.issn.1009-6264.2007.06.013

    [12] 张广庆, 徐楠, 王瑗. 粉末冶金压制成形理论与工艺综述. 热加工工艺, 2017, 46(19): 9

    Zhang G Q, Xu N, Wang Y. Review on theory and technology of powder metallurgy pressing forming. Hot Work Technol, 2017, 46(19): 9

    [13] 阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012

    Ruan J M, Huang P Y. Theory of Power Metallurgy. Beijing: China Machine Press, 2012

    [14] 何浩然. 粉末冶金钼棒制备工艺及其表面硅化改性研究[学位论文]. 重庆: 重庆理工大学, 2020

    He H R. Study on Preparation Technology of Powder Metallurgy Molybdenum Rod and its Surface Silicification Modification [Dissertation]. Chongqing: Chongqing University of Technology, 2020

    [15] 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料. 北京: 国防工业出版社, 2001

    Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics. Beijing: National Defense Industry Press, 2001

    [16] 张桃梅, 资旭辉, 程小凡, 等. 3D打印用球形钨、钽粉末的等离子球化工艺研究. 中南大学学报(自然科学版), 2022, 53(7): 2439

    Zhang T M, Zi X H, Chen X F, et al. Plasma spheroidization of tungsten/tantalum powders for 3D printing. J Cent South Univ Sci Technol, 2022, 53(7): 2439

    [17] 谢辉, 杨刘晓, 赵宝华, 等. Mo粉末冷等静压成形规律. 铸造技术, 2007, 28(40): 480

    Xie H, Yang L X, Zhao B H, et al. Formation mechanism of Mo powders under isostatic cool pressing. Foundry Technol, 2007, 28(40): 480

    [18] 张炜, 萧伟健, 袁传牛, 等. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术, 2024, 42(4): 403

    Zhang W, Xiao W J, Yuan C N, et al. Influence mechanism of force chain on jamming behavior in powder compaction based on 3D discrete element model. Powder Metall Technol, 2024, 42(4): 403

图(7)  /  表(4)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  25
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 录用日期:  2023-09-11
  • 网络出版日期:  2023-09-11
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回