高级检索

微波烧结锇的工艺研究及动力学分析

刘伟, 李世磊, 周帆, 杨韵斐, 谢元峰, 夏扬, 吕宏, 张超, 张小可, 王金淑

刘伟, 李世磊, 周帆, 杨韵斐, 谢元峰, 夏扬, 吕宏, 张超, 张小可, 王金淑. 微波烧结锇的工艺研究及动力学分析[J]. 粉末冶金技术, 2021, 39(5): 394-402. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030013
引用本文: 刘伟, 李世磊, 周帆, 杨韵斐, 谢元峰, 夏扬, 吕宏, 张超, 张小可, 王金淑. 微波烧结锇的工艺研究及动力学分析[J]. 粉末冶金技术, 2021, 39(5): 394-402. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030013
LIU Wei, LI Shi-lei, ZHOU Fan, YANG Yun-fei, XIE Yuan-feng, XIA Yang, LÜ Hong, ZHANG Chao, ZHANG Xiao-ke, WANG Jin-shu. Process and kinetic analysis of osmium prepared by microwave sintering[J]. Powder Metallurgy Technology, 2021, 39(5): 394-402. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030013
Citation: LIU Wei, LI Shi-lei, ZHOU Fan, YANG Yun-fei, XIE Yuan-feng, XIA Yang, LÜ Hong, ZHANG Chao, ZHANG Xiao-ke, WANG Jin-shu. Process and kinetic analysis of osmium prepared by microwave sintering[J]. Powder Metallurgy Technology, 2021, 39(5): 394-402. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030013

微波烧结锇的工艺研究及动力学分析

详细信息
    通讯作者:

    王金淑: E-mail: wangjsh@bjut.edu.cn

  • 中图分类号: TF124

Process and kinetic analysis of osmium prepared by microwave sintering

More Information
  • 摘要: 采用微波烧结技术制备锇(Os)烧结体,研究了生坯压制压强和微波烧结主要工艺参数(升温速率、烧结温度和保温时间)对Os烧结体组织结构和相对密度的影响规律,分析了微波烧结致密化的机理。结果表明,1350 ℃微波烧结后Os平均晶粒尺寸约0.22 μm,与粉体颗粒尺寸差别不大;随着烧结温度增加到1500 ℃,晶粒尺寸长大到0.76 μm。1500 ℃烧结时,延长保温时间,Os烧结体的相对密度先快速增加,后缓慢增加。1500 ℃微波烧结60 min后,Os烧结体相对密度为94.3%,平均粒径小于1 μm。烧结动力学分析表明,Os的致密化过程是体积扩散和晶界扩散共同作用的结果,随着烧结温度的升高,扩散机制从晶界扩散逐渐向体积扩散转变。
    Abstract: Os sintered body was prepared by microwave sintering process. The influences of the green compact pressure and the microwave sintering parameters (heating rate, sintering temperature, and holding time) on the microstructure and relative density of Os sintered bodies were investigated. The densification mechanism of Os microwave sintering was analyzed. The results show that, the average grain size of Os after microwave sintering at 1350 ℃ is about 0.22 μm, which is close to the average particle size of the Os powders. With the increase of the sintering temperature to 1500 ℃, the grain size grows to 0.76 μm. The relative density of the Os sintered body increases rapidly at first and then slowly after prolonging the holding time sintered at 1500 ℃. After microwave sintering at 1500 ℃ for 60 min, the relative density of the Os sintered body is 94.3%, and the average particle size is less than 1 μm. The sintering kinetics analysis shows that the densification process of Os is the result of the combined action of volume diffusion and grain boundary diffusion. With the increase of the sintering temperature, the diffusion mechanism gradually transfers from grain boundary diffusion to volume diffusion.
  • 图  1   微波烧结实验装置示意图

    Figure  1.   Schematic diagram of the microwave sintering experimental setup

    图  2   Os粉体扫描电子显微形貌(a)、X射线衍射分析(b)和粒径分布(c)

    Figure  2.   SEM image (a), XRD pattern (b), and particle size distribution (c) of the osmium powders

    图  3   微波加热金属颗粒示意图

    Figure  3.   Schematic diagram of the microwave penetration in a metal powder

    图  4   微波作用体积分数与粉体粒度的关系

    Figure  4.   Relationship between the volume fraction of microwave radiation and the powder particle size

    图  5   压制压强对样品相对密度的影响:(a)不同压制压强下的生坯相对密度;(b)不同生坯相对密度对应烧结试样相对密度

    Figure  5.   Effect of pressing pressure on the relative density of the samples: (a) the relative density of the Os green body under the different pressing; (b) the relative density of the Os sintered body for the different relative density of the Os green body

    图  6   以不同升温速率升温至1500 ℃保温30 min的Os样品断口形貌:(a)10 ℃·min−1;(b)20 ℃·min−1;(c)30 ℃·min−1;(d)40 ℃·min−1

    Figure  6.   Fracture surface images of the Os bodies by microwave sintering at 1500 ℃ for 30 min at the different heating rates: (a) 10 ℃·min−1; (b) 20 ℃·min−1; (c) 30 ℃·min−1; (d) 40 ℃·min−1

    图  7   不同烧结温度保温30 min后Os样品断口形貌:(a)1350 ℃;(b)1400 ℃;(c)1450 ℃;(d)1500 ℃

    Figure  7.   Fracture surface images of the Os bodies by microwave sintering at the different temperatures for 30 min: (a) 1350 ℃; (b) 1400 ℃; (c) 1450 ℃; (d) 1500 ℃

    图  8   不同烧结温度(保温30 min)样品的晶粒尺寸分布:(a)1350 ℃;(b)1400 ℃;(c)1450 ℃;(d)1500 ℃

    Figure  8.   Grain size distribution of the Os bodies by microwave sintering at the different temperatures for 30 min: (a) 1350 ℃; (b) 1400 ℃; (c) 1450 ℃; (d) 1500 ℃

    图  9   不同烧结温度下(保温30 min)样品的相对密度

    Figure  9.   Relative density of the Os bodies by microwave sintering at the different temperatures for 30 min

    图  10   不同保温时间下1500 ℃微波烧结样品的断口形貌:(a)15 min;(b)30 min;(c)45 min;(d)60 min

    Figure  10.   Fracture surface images of the Os bodies by microwave sintering at 1500 ℃ for the different holding times: (a) 15 min; (b) 30 min; (C) 45 min; (d) 60 min

    图  11   1500 ℃微波烧结不同保温时间样品的对相对密度

    Figure  11.   Relative density of the Os bodies by microwave sintering at 1500 ℃ for the different holding times

    图  12   不同烧结温度下的Os样品相对收缩率随烧结时间的变化(a)和烧结动力学曲线(b)

    Figure  12.   Relative shrinkages with the sintering time (a) and the sintering kinetic curves (b) of the Os sintered bodies at different temperatures

    表  1   烧结动力学方程中的n

    Table  1   n values in the sintering kinetic equation

    烧结温度 / ℃1/nn标准误差 / %
    14000.3422.9243.4
    14500.3472.8816.1
    15000.3672.72411.3
    下载: 导出CSV
  • [1] 中国冶金百科全书总编辑委员会《金属材料卷》编辑委员会. 中国冶金百科全书: 金属材料. 北京: 冶金工业出版社, 2001

    China Metallurgical Encyclopedia Editor-in-Chief "Metal Materials Volume" Editorial Committee. China Metallurgical Encyclopedia: Metal Materials. Beijing: Metallurgical Industry Press, 2001

    [2]

    Hämäläinen J, Sajavaara T, Puukilainen E, et al. Atomic layer deposition of osmium. Chem Mater, 2012, 24(1): 55 DOI: 10.1021/cm201795s

    [3]

    Green M C. The M-type cathode—no longer magic // 1980 International Electron Devices Meeting. Washington, 1980: 471

    [4]

    Zalm P, Van Stratum A J A. Osmium dispenser cathodes. Philips Technol Rev, 1966, 27: 69

    [5]

    Ares Fang C S, Maloney C E. Surface studies of Os/Re/W alloy-coated impregnated tungsten cathodes. J Vac Sci Technol A, 1990, 8(3): 2329 DOI: 10.1116/1.576758

    [6]

    Josell D, Witt C, Moffat T P. Osmium barriers for direct copper electrodeposition in damascene processing. Electrochem Solid-State Lett, 2006, 9(2): 48 DOI: 10.1149/1.2150165

    [7] 刘伟, 李俊辉, 王金淑, 等. 微波烧结法制备含钪扩散阴极及其发射性能研究. 稀有金属材料与工程, 2020, 49(5): 1766

    Liu W, Li J H, Wang J S, et al. Preparation of scandium dispenser cathode by microwave sintering and its electron emission property. Rare Met Mater Eng, 2020, 49(5): 1766

    [8]

    Rumman R, Lee C C, Quinton J S, et al. Understanding the potential of microwave sintering on WC–Co. Int J Refract Met Hard Mater, 2019, 81: 7 DOI: 10.1016/j.ijrmhm.2019.02.007

    [9]

    Soares E, Bouchonneau N, Alves E, et al. Microstructure and mechanical properties of AA7075 aluminum alloy fabricated by spark plasma sintering (SPS). Materials, 2021, 14(2): 430 DOI: 10.3390/ma14020430

    [10]

    Gao J Y, Yang L, Guo S H, et al. Fabrication of Fe60Cu40 pre-alloy bonded composites for diamond tools by microwave hot press sintering. J Mater Res Technol, 2020, 9(4): 8905 DOI: 10.1016/j.jmrt.2020.06.001

    [11]

    Hou M, Guo S H, Yang L, et al. Microwave hot press sintering: New attempt for the fabrication of Fe–Cu pre-alloyed matrix in super-hard material. Powder Technol, 2019, 356: 403 DOI: 10.1016/j.powtec.2019.08.055

    [12]

    Ye J D, Yin Z B, Yuan J T, et al. Effects of metal phases on microstructure and mechanical properties of microwave-sintered Ti(C, N)-based cermet tool. Int J Appl Ceram Technol, 2020, 17(2): 761 DOI: 10.1111/ijac.13387

    [13]

    Mondal S, Durygin A, Drozd V, et al. Multicomponent bulk metal nitride (Nb1/3Ta1/3Ti1/3)N1−δ synthesis via reaction flash sintering and characterizations. J Am Ceram Soc, 2020, 103(9): 4876 DOI: 10.1111/jace.17226

    [14] 庄天涯, 张际亮, 王霏, 等. 金属粉末微波烧结机理研究进展. 粉末冶金技术, 2019, 37(5): 392

    Zhuang T Y, Zhang J L, Wang F, et al. Research progress on the microwave sintering mechanism of metal powders. Powder Metall Technol, 2019, 37(5): 392

    [15]

    El Khaled D, Novas N, Gazquez J A, et al. Microwave dielectric heating: Applications on metals processing. Renewable Sustainable Energy Rev, 2018, 82(3): 2880

    [16]

    Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refract Met Hard Mater, 2009, 27(3): 545 DOI: 10.1016/j.ijrmhm.2008.07.001

    [17]

    Roy R, Agrawal D, Cheng J P, et al. Full sintering of powdered-metal bodies in a microwave field. Nature, 1999, 399(6737): 668 DOI: 10.1038/21390

    [18]

    Chhillar P, Agrawal D, Adair J H. Sintering of molybdenum metal powder using microwave energy. Powder Metall, 2008, 51(2): 182 DOI: 10.1179/174329007X178001

    [19]

    Duan B H, Zhang Z, Wang D Z, et al. Microwave sintering of Mo nanopowder and its densification behavior. T Nonferrous Met Soc China, 2019, 29(8): 1705 DOI: 10.1016/S1003-6326(19)65077-6

    [20]

    Hou M, Guo S, Yang L, et al. Fabrication of Fe–Cu matrix diamond composite by microwave hot pressing sintering. Powder Technol, 2018, 338: 36 DOI: 10.1016/j.powtec.2018.06.043

    [21]

    Wang H, Ren W, Li G, et al. Microstructure and properties of FeCoNi1.5CrCu/2024Al composites prepared by microwave sintering. Mater Sci Eng A, 2021, 801: 140406 DOI: 10.1016/j.msea.2020.140406

    [22]

    Wang K, Wang X P, Liu R, et al. The study on the microwave sintering of tungsten at relatively low temperature. J Nucl Mater, 2012, 431(1-3): 206 DOI: 10.1016/j.jnucmat.2011.11.012

图(12)  /  表(1)
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  207
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 网络出版日期:  2021-05-23
  • 刊出日期:  2021-10-27

目录

    /

    返回文章
    返回