Citation: | MA Qiang, WANG Jian, WEI Qi-long, LU Cheng-gong, WEI Zhi-qiang. Investigation on optical properties of carbon-encapsulated CdS nanoparticles[J]. Powder Metallurgy Technology, 2021, 39(1): 54-61. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080014 |
[1] |
Yang X D, Wang Z S, Lü X Z, et al. Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis. J Photochem Photobiol A, 2016, 329: 175 DOI: 10.1016/j.jphotochem.2016.07.005
|
[2] |
Liu Y D, Ren L, Qi X, et al. One-step hydrothermal fabrication and enhancement of the photocatalytic performance of CdMoO4/CdS hybrid materials. RSC Adv, 2014, 4(17): 8772 DOI: 10.1039/c3ra46051g
|
[3] |
Liu I P, Chen L Y, Lee Y L. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells. J Power Sources, 2016, 325: 706 DOI: 10.1016/j.jpowsour.2016.06.095
|
[4] |
Fan K, Liao C, Xu R L, et al. Effect of shell thickness on electrochemical property of wurtzite CdSe/CdS core/shell nanocrystals. Chem Phys Lett, 2015, 633: 1 DOI: 10.1016/j.cplett.2015.05.006
|
[5] |
Yang H, Kershaw S V, Wang Y, et al. Shuttling photoelectrochemical electron transport in tricomponent CdS/rGO/TiO2 nanocomposites. J Phys Chem C, 2013, 117(40): 20406 DOI: 10.1021/jp405227t
|
[6] |
Ma B, Xu H, Lin K, et al. Mo2C as non-noble metal Co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. Chemsuschem, 2016, 9(8): 820 DOI: 10.1002/cssc.201501652
|
[7] |
Yan X, Wu Z, Huang C, et al. Hydrothermal synthesis of CdS/CoWO4, heterojunctions with enhanced visible light properties toward organic pollutants degradation. Ceram Int, 2017, 43(7): 5388 DOI: 10.1016/j.ceramint.2016.12.060
|
[8] |
Kumar S, Mehta S K. Varying photoluminescence emission of CdS nanoparticles in aqueous medium: A comparative study on effect of surfactant structure. Nano-Structures Nano-Objects, 2015, 2: 1 DOI: 10.1016/j.nanoso.2015.05.002
|
[9] |
Zirak M, Akhavan O, Moradlou O, et al. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J Alloys Compd, 2014, 590(4): 507
|
[10] |
Yang H, Jin Z, Fan K, et al. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity. Superlattices Microstruct, 2017, 111: 687 DOI: 10.1016/j.spmi.2017.07.025
|
[11] |
Wang Y F, Chen W, Chen X, et al. Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis. J Environ Sci, 2018, 65(3): 347
|
[12] |
Jo W K, Selvam N C S. Fabrication of photostable ternary CdS/MoS2/MWCNs hybrid photocatalysts with enhanced H2, generation activity. Appl Catal A, 2016, 525: 9 DOI: 10.1016/j.apcata.2016.06.036
|
[13] |
Zhang Z, Ren Y, Han L, et al. Mixed-solvothermal synthesis of CdS micro/nanostructures with optical and ferromagnetic properties. Physica E, 2017, 92: 30 DOI: 10.1016/j.physe.2017.04.027
|
[14] |
Zou S, Fu Z, Xiang C, et al. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chin J Catal, 2015, 36(7): 1077 DOI: 10.1016/S1872-2067(15)60827-0
|
[15] |
Li D, Xie J, Zhang Y, et al. Convenient synthesis of magnetically recyclable Fe3O4@C@CdS photocatalysts by depositing CdS nanocrystals on carbonized ferrocene. J Alloys Compd, 2015, 646: 978 DOI: 10.1016/j.jallcom.2015.06.075
|
[16] |
Hu Y, Gao X, Yu L, et al. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem Int Ed, 2013, 52(21): 5636 DOI: 10.1002/anie.201301709
|
[17] |
Liu Y, Yu Y X, Zhang W D. Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance. J Alloys Compd, 2013, 569(9): 102
|
[18] |
Patel J D, Vu T T D, Mighri F. Preparation and characterization of CdS coated multiwalled carbon nanotubes. Mater Lett, 2017, 196: 161 DOI: 10.1016/j.matlet.2017.03.046
|
[19] |
Wang F, Liang L, Chen K, et al. CO2, induced template approach to fabricate the porous C/CdS visible photocatalyst with superior activity and stability. J Mol Catal A Chem, 2016, 425: 76 DOI: 10.1016/j.molcata.2016.09.034
|
[20] |
Chen R, Han B, Yang L, et al. Controllable synthesis and characterization of CdS quantum dots by a microemulsion-mediated hydrothermal method. J Lumin, 2016, 172: 197 DOI: 10.1016/j.jlumin.2015.12.006
|
[21] |
张建民, 王晶, 张继, 等. 氧化石墨烯复合材料的制备及对铜离子吸附性能的研究. 粉末冶金技术, 2018, 36(6): 445
Zhang J M, Wang J, Zhang J, et al. Preparation of graphene oxide composites and study on adsorption properties of copper ions. Powder Metall Technol, 2018, 36(6): 445
|
[22] |
李雷, 董桂霞, 李宗峰, 等. 固相反应条件对磷酸铁锂电化学性能的影响. 粉末冶金技术, 2019, 37(5): 332
Li L, Dong G X, Li Z F, et al. Effects of solid phase reaction conditions on electrochemical performance of lithium iron phosphate. Powder Metall Technol, 2019, 37(5): 332
|
[23] |
魏邦争, 陈闻超, 朱曦, 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响. 粉末冶金技术, 2018, 36(5): 363
Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites. Powder Metall Technol, 2018, 36(5): 363
|
[24] |
邹帅, 伏再辉, 曾明, 等. CuS/CdS光催化剂的制备及其光催化性能研究. 湖南师范大学自然科学学报, 2016, 39(5): 57 DOI: 10.7612/j.issn.1000-2537.2016.05.009
Zou S, Fu Z H, Zeng M, et al. Study on preparation of CuS/CdS photocatalysts and their photocatalytic performance. J Nat Sci Hunan Normal Univ, 2016, 39(5): 57 DOI: 10.7612/j.issn.1000-2537.2016.05.009
|
[25] |
Zhou M, Hu Y, Liu Y, et al. Microwave-assisted route to fabricate coaxial ZnO/C/CdS nanocables with enhanced visible light-driven photocatalytic activity. Crystengcomm, 2012, 14(22): 7686 DOI: 10.1039/c2ce25540e
|