AdvancedSearch
LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017
Citation: LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017

Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites

More Information
  • Corresponding author:

    YANG Ya-feng, E-mail: yfyang@ipe.ac.cn

  • Received Date: May 29, 2022
  • Accepted Date: May 29, 2022
  • Available Online: July 17, 2022
  • The morphology and distribution of reinforcements in the titanium matrix composites (TMCs) are crucial in determining the material performances. Due to the uncontrollable morphology and inhomogeneous distribution of the reinforcements in the current TMCs, a series of C-coated Ti composite powders were developed by fluidization technology. By designing the structure and composition of C-coatings, the different morphology combinations and the intragranular/interface reinforcements were both achieved, which significantly improved the mechanical properties of TMCs. Furthermore, the composite powders were also extended to the 3D printing of TMCs, which solved the bottleneck issue of lacking the high-quality composite powders. The research results and work progress of the C-coated Ti composite powders in the preparation of high-performance TMCs were summarized and reviewed, providing the new insight and technical route for the design and control of reinforcements in TMCs.

  • [1]
    Hayat M D, Singh H, He Z, et al. Titanium metal matrix composites: An overview. Composites Part A, 2019, 121: 418 DOI: 10.1016/j.compositesa.2019.04.005
    [2]
    Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites. Adv Mater, 2021, 33(6): 2000688 DOI: 10.1002/adma.202000688
    [3]
    Jiao Y, Huang L J, Geng L. Progress on discontinuously reinforced titanium matrix composites. J Alloys Compd, 2018, 767: 1196 DOI: 10.1016/j.jallcom.2018.07.100
    [4]
    Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci, 2015, 71: 93
    [5]
    Namini A S, Dilawary S A A, Motallebzadeh A, et al. Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite. Composites Part B, 2019, 172: 271 DOI: 10.1016/j.compositesb.2019.05.073
    [6]
    Liao Z R, Abdelhafeez A, Li H N, et al. State-of-the-art of surface integrity in machining of metal matrix composites. Int J Mach Tool Manuf, 2019, 143: 63 DOI: 10.1016/j.ijmachtools.2019.05.006
    [7]
    Froes F H, Eylon D. Powder metallurgy of titanium alloys. Int Mater Rev, 1990, 35(1): 162 DOI: 10.1179/095066090790323984
    [8]
    Ezugwu E O, Wang Z M. Titanium alloys and their machinability–a review. J Mater Process Technol, 1997, 68: 262 DOI: 10.1016/S0924-0136(96)00030-1
    [9]
    Ma F C, Wang T R, Liu P, et al. Mechanical properties and strengthening effects of in situ (TiB+TiC)/Ti-1100 composite at elevated temperatures. Mater Sci Eng A, 2016, 654: 352 DOI: 10.1016/j.msea.2015.12.071
    [10]
    黄陆军, 耿林. 网状结构钛基复合材料. 北京: 国防工业出版社, 2015

    Huang L J, Geng L. Titanium Matrix Composites with Network Microstructure. Beijing: National Defense Industry Press, 2015
    [11]
    Liu Q, Qi F G, Wang Q, et al. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites. Mater Sci Eng A, 2018, 731: 351 DOI: 10.1016/j.msea.2018.06.067
    [12]
    Yan Q, Chen B, Cao L, et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides. J Mater Sci Technol, 2022, 96: 85 DOI: 10.1016/j.jmst.2021.03.073
    [13]
    汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金颗粒增强钛基复合材料研究进展. 粉末冶金技术, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008

    Tang H P, Huang B Y, Liu Y, et al. Progress in powder metallurgy particle reinforced Ti matrix composite. Powder Metall Technol, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008
    [14]
    杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(2): 150 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.011

    Yang Y C, Pan Y, Lu X, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(2): 150 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.011
    [15]
    Saba F, Zhang F M, Liu S L, et al. Tribological properties, thermal conductivity and corrosion resistance of titanium/nanodiamond nanocomposites. Compos Commun, 2018, 10: 57 DOI: 10.1016/j.coco.2018.06.008
    [16]
    Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon, 2015, 95: 396 DOI: 10.1016/j.carbon.2015.08.061
    [17]
    Lü S, Li J S, Li S F, et al. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers. J Alloys Compd, 2021, 877: 160313 DOI: 10.1016/j.jallcom.2021.160313
    [18]
    Munir K S, Zheng Y F, Zhang D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A, 2017, 696: 10 DOI: 10.1016/j.msea.2017.04.026
    [19]
    Munir K S, Li Y C, Qian M, et al. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99: 384 DOI: 10.1016/j.carbon.2015.12.041
    [20]
    Munir K S, Li Y C, Li J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3: 122 DOI: 10.1016/j.mtla.2018.08.015
    [21]
    Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–A review. Prog Mater Sci, 2020, 113: 100672 DOI: 10.1016/j.pmatsci.2020.100672
    [22]
    冯俊, 姜中涛, 韩骐璘. 不连续增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(5): 392 DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001

    Feng J, Jiang Z T, Han Q L. Research progress on discontinuous reinforced titanium matrix composites. Powder Metall Technol, 2020, 38(5): 392 DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001
    [23]
    Luo S D, Li Q, Tian J, et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr Mater, 2013, 69: 29 DOI: 10.1016/j.scriptamat.2013.03.017
    [24]
    Geng L, Ni D R, Zhang J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. J Alloys Compd, 2008, 463(1): 488
    [25]
    Huang L J, Geng L, Xu H Y, et al. In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture. Mater Sci Eng A, 2011, 528: 2859 DOI: 10.1016/j.msea.2010.12.046
    [26]
    Huang L J, Geng L, Peng H X, et al. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater Sci Eng A, 2012, 534: 688 DOI: 10.1016/j.msea.2011.12.028
    [27]
    Zadra M, Girardini L. High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A, 2014, 608: 155 DOI: 10.1016/j.msea.2014.04.066
    [28]
    宋杰光, 纪岗昌, 李世斌, 等. 粉体包覆技术的研究进展. 材料导报, 2009, 23(增刊1): 164

    Song J G, Ji G C, Li S B, et al. Review on coating technology of powder. Mater Rev, 2009, 23(Suppl 1): 164
    [29]
    Li S F, Tan C, Liu Y, et al. Designing core-shell C-coated Ti–6Al–4V powders for high-performance nano-sized TiC platelets/particles synergistically reinforced Ti–6Al–4V composites. Materialia, 2018, 2: 68 DOI: 10.1016/j.mtla.2018.06.010
    [30]
    Li S F, Liu Y, Yang Y F. Activating trace Fe impurity as catalyst to plant carbon nanotubes within Ti–6Al–4V powders for high-performance Ti-matrix composites. Metall Mater Trans A, 2019, 50: 3975 DOI: 10.1007/s11661-019-05321-x
    [31]
    Li S F, Cui J Y, Yang Y F, et al. In situ growth of carbon nanotubes on Ti powder for strengthening of Ti matrix composite via nanotube-particle dual morphology. Metall Mater Trans A, 2020, 51: 5932 DOI: 10.1007/s11661-020-05988-7
    [32]
    Li S F, Yang Y F, Misra R D K, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder. Carbon, 2020, 164: 378 DOI: 10.1016/j.carbon.2020.04.010
    [33]
    Li S F, Geng K, Misra R D K, et al. Commercial scale uniform powder coating for metal additive manufacturing. JOM, 2020, 72: 4639 DOI: 10.1007/s11837-020-04386-z
    [34]
    Vasanthakumar K, Karthiselva N S, Chawake N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J Alloys Compd, 2017, 709: 829 DOI: 10.1016/j.jallcom.2017.03.216
    [35]
    Adegbenjoa A O, Olubambia P A, Potgieter J H, et al. Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des, 2017, 128: 119 DOI: 10.1016/j.matdes.2017.05.003
    [36]
    Munir K S, Oldfield D T, Wen C. Role of process control agent in the synthesis of multi-walled carbon nanotubes reinforced titanium metal matrix powder mixtures. Adv Eng Mater, 2016, 18: 294 DOI: 10.1002/adem.201500346
    [37]
    Lee H J, Kim S H, Lee J C. Promotion of C diffusion to prepare a high-strength wear-resistant Ti alloy. Scr Mater, 2016, 115: 33 DOI: 10.1016/j.scriptamat.2015.12.024
    [38]
    Hao Y J, Liu J X, Li J H, et al. Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique. Mater Des, 2015, 65: 94 DOI: 10.1016/j.matdes.2014.09.008
    [39]
    Zhang X J, Song F, Wei Z P, et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Mater Sci Eng A, 2017, 705: 153 DOI: 10.1016/j.msea.2017.08.079
    [40]
    Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576: 91 DOI: 10.1038/s41586-019-1783-1
    [41]
    Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci, 2019, 104: 330 DOI: 10.1016/j.pmatsci.2019.04.006
    [42]
    Yan Q, Chen B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting. Carbon, 2021, 174: 451 DOI: 10.1016/j.carbon.2020.12.047
    [43]
    Zeng X, Yamaguchi T, Nishio K. Characteristics of Ti(C, N)/TiB composite layer on Ti–6Al–4V alloy produced by laser surface melting. Opt Laser Technol, 2016, 80: 84 DOI: 10.1016/j.optlastec.2016.01.004
    [44]
    Gu D D, Hagedorn Y C, Meiners W, et al. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coat Technol, 2011, 205: 3285 DOI: 10.1016/j.surfcoat.2010.11.051
    [45]
    Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scr Mater, 2012, 67: 185 DOI: 10.1016/j.scriptamat.2012.04.013
    [46]
    He B B, Chang K, Wu W H, et al. The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 2017, 143: 23 DOI: 10.1016/j.vacuum.2017.05.029
    [47]
    Liu Y, Li S F, Misra R D K, et al. Planting carbon nanotubes within Ti–6Al–4V to make high-quality composite powders for 3D printing high-performance Ti–6Al–4V matrix composites. Scr Mater, 2020, 183: 6 DOI: 10.1016/j.scriptamat.2020.03.009
    [48]
    Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties. Addit Manuf, 2019, 29: 100801
    [49]
    Aboulkhair N T, Simonelli M, Salama E, et al. Evolution of carbon nanotubes and their metallurgical reactions in Al-based composites in response to laser irradiation during selective laser melting. Mater Sci Eng A, 2019, 765: 138307 DOI: 10.1016/j.msea.2019.138307
    [50]
    Zhang B C, Bi G J, Chew Y X, et al. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites. Appl Surf Sci, 2019, 490: 522 DOI: 10.1016/j.apsusc.2019.06.008
  • Cited by

    Periodical cited type(2)

    1. 郑鑫轲,李俊. 建筑用高性能热轧钛-钢复合材料的力学性能研究. 兵器材料科学与工程. 2024(05): 33-38 .
    2. 王凯,袁战伟,李姝,王婧伊,于源. 界面层厚度对HEA_p/Ti基复合材料力学性能的影响. 热加工工艺. 2024(21): 89-95 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (4494) PDF downloads (76) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return