Citation: | WANG Xiaolu. Application of topology optimization design and embedded technology in 3D printing[J]. Powder Metallurgy Technology, 2023, 41(3): 241-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040004 |
3D printing, also known as additive manufacturing (AM), is a technology that uses 3D design data to build physical parts by adding materials layer by layer. With the application of information technology and intelligent control to 3D printing technology, the 3D printing technology is becoming more and more mature and commercialized gradually. The rapid development of manufacturing technology often requires the rapid follow-up of design technology. Topology optimization method has become an important tool for the structural innovative design because it is independent of the initial configuration and the engineer experience and can obtain completely unexpected innovative configurations. Embedded technology is a device or system that is controlled by an internal computer and performs a special function. Compared with the general purpose computer systems, the embedded systems have the advantages in 3D printing, such as low power consumption, powerful functions, strong real-time performance, multi-task support, small space occupation, and high efficiency, and the specific applications can be customized according to the needs of flexible. The application of topology optimization design and embedded digital technology in 3D printing was summarized in this paper, the application cases of topology optimization and the mainstream software of topology optimization were introduced, the application advantages and cases of the embedded technology in 3D printing were analyzed, and the future topology optimization design and the application of embedded digital technology in 3D printing were prospected.
[1] |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展. 机械制造与自动化, 2013, 42(4): 1 DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001
Lu P H, Li D C. Development of the additive manufacturing (3D printing) technology. Mach Build Autom, 2013, 42(4): 1 DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001
|
[2] |
倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.001
Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.001
|
[3] |
柳朝阳, 赵备备, 李兰杰, 等. 金属材料3D打印技术研究进展. 粉末冶金工业, 2020, 30(2): 83 DOI: 10.13228/j.boyuan.issn1006-6543.20180139
Liu Z Y, Zhao B B, Li L J, et al. Research progress of metal materials for 3D printing technology. Powder Metall Ind, 2020, 30(2): 83 DOI: 10.13228/j.boyuan.issn1006-6543.20180139
|
[4] |
王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展. 粉末冶金技术, 2022, 40(2): 179
Wang Y, Liu Y M, Liu J W, et al. Research progress on numerical simulation of metal additive-manufacturing process. Powder Metall Technol, 2022, 40(2): 179
|
[5] |
张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.012
Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.012
|
[6] |
刘书田, 李取浩, 陈文炯, 等. 拓扑优化与增材制造结合: 一种设计与制造一体化方法. 航空制造技术, 2017(10): 26
Liu S T, Li Q H, Chen W J, et al. Combining topology optimization and additive manufacturing: an integrated approach to design and manufacturing. Aeron Manuf Technol, 2017(10): 26
|
[7] |
Zhu J H, Zhang W H, Xia L. Topology optimization in aircraft and aerospace structures design. Arch Comput Meth Eng, 2016, 23: 595 DOI: 10.1007/s11831-015-9151-2
|
[8] |
葛红宇, 罗茂炫, 张建华, 等. 3D打印嵌入式工业控制系统硬件设计. 工业控制计算机, 2018, 31(1): 9 DOI: 10.3969/j.issn.1001-182X.2018.01.004
Ge H Y, Luo M X, Zhang J H, et al. Hardware development of embedded control system for 3D printing. Ind Control Comput, 2018, 31(1): 9 DOI: 10.3969/j.issn.1001-182X.2018.01.004
|
[9] |
李静. 计算机仿真在粉末冶金过程的应用及研究进展. 粉末冶金技术, 2021, 39(4): 366 DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001
Li J. Application and research progress of computer simulation used in powder metallurgy process. Powder Metall Technol, 2021, 39(4): 366 DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001
|
[10] |
Liu S T, Hu R, Li Q H, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope. Appl Opt, 2014, 53(35): 8318 DOI: 10.1364/AO.53.008318
|
[11] |
高进城. 考虑增材制造中悬空角度约束的结构拓扑优化[学术论文]. 大连: 大连理工大学, 2019
Gao J C. Structural Topology Optimization Considering the Overhang Constraint in Additive Manufacturing [Dissertation]. Dalian: Dalian University of Technology, 2019
|
[12] |
王仁, 杨伟群. 选择性激光熔化技术及面向航空组件的拓扑优化研究. 现代制造工程, 2018(12): 24 DOI: 10.16731/j.cnki.1671-3133.2018.12.005
Wang R, Yang W Q. SLM technology and topology optimization for lighter aerospace components. Mod Manuf Eng, 2018(12): 24 DOI: 10.16731/j.cnki.1671-3133.2018.12.005
|
[13] |
罗勇, 杜平, 朱丽君, 等. 基于Inspire软件的拓扑优化设计案例分析. 制造技术与机床, 2021(11): 31 DOI: 10.19287/j.cnki.1005-2402.2021.11.005
Luo Y, Du P, Zhu L J, et al. A case study of topology optimization design based on Inspire software. Manuf Technol Mach Tool, 2021(11): 31 DOI: 10.19287/j.cnki.1005-2402.2021.11.005
|
[14] |
王龙轩, 杜文风, 张 帆, 等. 四分叉铸钢节点拓扑优化及3D打印制造. 建筑结构学报, 2021, 42(6): 37 DOI: 10.14006/j.jzjgxb.2020.0297
Wang L X, Du W F, Zhang F, et al. Topology optimization and 3D printing manufacturing of four-branch cast-steel joint. J Build Struct, 2021, 42(6): 37 DOI: 10.14006/j.jzjgxb.2020.0297
|
[15] |
徐文鹏, 王伟明, 李航, 等. 面向3D打印体积极小的拓扑优化技术. 计算机研究与发展, 2015, 52(1): 38 DOI: 10.7544/issn1000-1239.2015.20140108
Xu W P, Wang W M, Li H, et al. Topology optimization for minimal volume in 3D printing. J Comput Res Develop, 2015, 52(1): 38 DOI: 10.7544/issn1000-1239.2015.20140108
|
[16] |
Wang F W, Sigmund O, Jensen J S. Design of materials with prescribed nonlinear properties. J Mech Phys Solids, 2014, 69: 156 DOI: 10.1016/j.jmps.2014.05.003
|
[17] |
Clausen A, Wang F W, Jensen J S, et al. Topology optimized architectures with programmable Poisson's ratio over large deformations. Adv Mater, 2015, 27: 5523 DOI: 10.1002/adma.201502485
|
[18] |
Shi G H, Guan C Q, Quan D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing. Chin J Aeron, 2020, 33(4): 1252 DOI: 10.1016/j.cja.2019.09.006
|
[19] |
Tang Y L, Dong G Y, Zhou Q X, et al. Lattice structure design and optimization with additive manufacturing constraints. IEEE Trans Autom Sci Eng, 2018, 15(4): 1546 DOI: 10.1109/TASE.2017.2685643
|
[20] |
朱继宏, 周 涵, 王 创, 等. 面向增材制造的拓扑优化技术发展现状与未来. 航空制造技术, 2020, 60(10): 24 DOI: 10.16080/j.issn1671-833x.2020.10.024
Zhu J H, Zhou H, Wang C, et al. Status and future of topology optimization for additive manufacturing. Aeron Manuf Technol, 2020, 60(10): 24 DOI: 10.16080/j.issn1671-833x.2020.10.024
|
[21] |
高楚寒, 吴文恒, 张亮. 高温钛合金及钛基复合材料增材制造技术研究现状. 粉末冶金技术, 2023, 41(1): 55
Gao C H, Wu W H, Zhang L. Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites. Powder Metall Technol, 2023, 41(1): 55
|
[22] |
Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting. Add Manuf, 2020: 101060
|
[23] |
吴文恒, 吴凯琦, 肖逸凡, 杨启云. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
|
[24] |
梁雄, 杜平, 朱丽君, 等. 面向增材制造的拓扑优化设计模块分析. 制造技术与机床, 2021(5): 76 DOI: 10.19287/j.cnki.1005-2402.2021.05.009
Liang X, Du P, Zhu L J, et al. Analysis of topology optimization design module for additive manufacturing. Manuf Technol Mach Tool, 2021(5): 76 DOI: 10.19287/j.cnki.1005-2402.2021.05.009
|
[25] |
李佳. 基于ARM的3D打印上位机软件开发及填充算法研究[学术论文]. 西安: 西安理工大学, 2019
Li J. Development of 3D Printing Upper Computer Software Based on ARM and Research of Filling Algorithms [Dissertation]. Xi’an: Xi’an University of Technology, 2019
|
[26] |
王苏洲, 舒志兵, 李俊. 基于ARM的桌面型3D打印机控制系统的设计与优化. 电子器件, 2017, 40(5): 1324
Wang S Z, Shu Z B, Li J. Design and implementation of control system for FDM 3D printer based on ARM. Chin J Electron Dev, 2017, 40(5): 1324
|
[27] |
孔明茹, 王海艳, 教莹莹, 等. 基于嵌入式的口腔正畸3D打印控制系统设计. 电子科技, 2017, 30(7): 114 DOI: 10.16180/j.cnki.issn1007-7820.2017.07.031
Kong M R, Wang H Y, Jiao Y Y, et al. Development and design of 3D control system for orthodontics based on embedded system. Electron Sci Technol, 2017, 30(7): 114 DOI: 10.16180/j.cnki.issn1007-7820.2017.07.031
|
[28] |
冯清秀, 阿占文. 多平台快速成型软件设计. 制造技术与机床, 2014(4): 33 DOI: 10.3969/j.issn.1005-2402.2014.04.014
Feng Q X, A Z W. Design of multi-platform rapid prototyping software. Manuf Technol Mach Tool, 2014(4): 33 DOI: 10.3969/j.issn.1005-2402.2014.04.014
|