AdvancedSearch
LIN Bingtao, ZHANG Baohong, TANG Liangliang, XIONG Ning, ZHANG Danhua, ZHANG Lei. Ablation resistance properties and microstructure of plasma spraying coatings[J]. Powder Metallurgy Technology, 2023, 41(3): 282-288. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110013
Citation: LIN Bingtao, ZHANG Baohong, TANG Liangliang, XIONG Ning, ZHANG Danhua, ZHANG Lei. Ablation resistance properties and microstructure of plasma spraying coatings[J]. Powder Metallurgy Technology, 2023, 41(3): 282-288. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110013

Ablation resistance properties and microstructure of plasma spraying coatings

More Information
  • Corresponding author:

    ZHANG Baohong, E-mail: zhangbaohong@atmcn.com

  • Received Date: May 08, 2022
  • Accepted Date: May 08, 2022
  • Available Online: May 08, 2022
  • Tungsten (W) and tungsten alloy coatings were prepared by plasma spraying on 45# steel and TC4 titanium alloys. Ablation tests were carried out under the different ablation conditions. The ablation resistance of the coatings was compared, and the ablation failure mechanism of the coatings was discussed. The results show that, the ablation resistance of the base materials is improved by spraying W coatings. When the ablation temperature is 2600 ℃ for 11 s, the coatings are oxidized, and there is no ablation phenomenon. When the ablation temperature is 3400 ℃ for 6 s, the coatings have the obvious ablation, indicating that the heat is transferred to the matrix, resulting in the matrix temperature exceeding the own melting point. The W+Al2O3 and W+ZrO2 composite coatings slow down the heat transfer rate from the coating surface to the substrate, and improve the ablative resistance of the substrate materials. The dynamometer curves of W+Al2O3 and W+ZrO2 composite coatings show the zigzag decline and do not resist the erosion, but the coating ablative resistance time is relatively long.

  • [1]
    葛毅成, 彭可, 杨琳, 等. C/C–Cu复合材料表面等离子喷涂钨涂层. 粉末冶金材料科学与工程, 2010, 15(2): 136

    Ge Y C, Peng K, Yang L, et al. Coating tungsten on C/C–Cu composites surface by plasma spraying. Mater Sci Eng Powder Metall, 2010, 15(2): 136
    [2]
    梁明德, 于继平, 张鑫, 等. 高温热障涂层陶瓷层材料研究进展. 热喷涂技术, 2013, 5(2): 1

    Liang M D, Yu J P, Zhang X, et al. Progress in ceramic materials for high temperature thermal barrier coatings. Therm Spray Technol, 2013, 5(2): 1
    [3]
    徐鹏, 宋仁国, 王超. 大气等离子喷涂氧化锆热障涂层研究进展. 热加工工艺, 2011, 40(12): 114

    Xu P, Song R G, Wang C. Research progress of atmospheric plasma sprayed zirconia thermal barrier. Hot Working Technol, 2011, 40(12): 114
    [4]
    郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展. 中国材料进展, 2009, 28(9-10): 18

    Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines. Mater China, 2009, 28(9-10): 18
    [5]
    郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展. 航空学报, 2014, 35(10): 2722

    Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies. Acta Aeronaut Astronaut Sin, 2014, 35(10): 2722
    [6]
    张雪辉, 林晨光, 崔舜, 等. 钨及其合金涂层的研究现状. 兵工学报, 2013, 34(3): 365

    Zhang X X, Lin C G, Cui S, et al. Research status of tungsten and its alloy coating. Acta Armament, 2013, 34(3): 365
    [7]
    周小军, 赵刚, 田进鹏. 一种面向航天器发动机的新型铌钨合金制备及其抗氧化涂层设计. 空间科学学报, 2016, 36(1): 99 DOI: 10.11728/cjss2016.01.099

    Zhou X J, Zhao G, Tian J P. Design of a new type of Nb–W alloy and its high-temperature oxidation resistance coating uesd in the field of spacecraft engine. Chin J Space Sci, 2016, 36(1): 99 DOI: 10.11728/cjss2016.01.099
    [8]
    赵刚, 周小军, 田进鹏, 等. 航天发动机用铌钨合金表面涂层堆积. 金属热处理, 2015, 40(12): 161

    Zhao G, Zhou X J, Tian J P, et al. Coating accumulation on surface of Nb–W alloy used for aerospace engine. Heat Treat Met, 2015, 40(12): 161
    [9]
    张贺. 炮钢表面沉积钨合金涂层的摩擦磨损性能研究[学位论文]. 沈阳: 沈阳理工大学, 2021

    Zhang H. Friction and Wear Properties of Tungsten Alloy Coating Deposited on Gun Steel [Dissertation]. Shenyang: Shenyang Ligong University, 2021)
    [10]
    刘建军, 李铁虎, 郝志彪, 等. 炭/炭复合材料表面等离子喷涂钨涂层结构与性能研究. 表面技术, 2003, 32(3): 28

    Liu J J, Li T H, Hao Z B, et al. Study on structure and performance of plasma-spraying tungsten coatings on carbon-carbon composites. Surf Technol, 2003, 32(3): 28
    [11]
    唐强, 伍建华, 颜超, 等. 大气等离子喷涂工艺参数对Al2O3涂层性能的影响. 材料保护, 2019, 52(4): 106

    Tang Q, Wu J H, Yan C, et al. Effect of process parameters on properties of atmospheric plasma sprayed Al2O3 coating. Mater Protect, 2019, 52(4): 106
    [12]
    解菁, 谢善, 全琼蕊, 等. 等离子喷涂Al2O3陶瓷涂层的显微组织检测技术. 金属热处理, 2021, 46(4): 210

    Xie J, Xie S, Quan Q R, et al. Metallography technology of plasma sprayed Al2O3 ceramic coating. Heat Treat Met, 2021, 46(4): 210
    [13]
    张巍. 氧化锆基陶瓷热障涂层的研究进展. 航空工程进展, 2018, 9(4): 464

    Zhang W. Progress on zirconia-based ceramics for thermal barrier coatings. Adv Aeronaut Sci Eng, 2018, 9(4): 464
    [14]
    盛晓晨, 孟佳, 严彪, 等. 钽钨合金Si–Ti–Hf高温抗氧化涂层的制备及性能研究. 粉末冶金工业, 2021, 31(2): 23

    Sheng X C, Meng J, Yan B, et al. Preparation and oxidation behavior of Si–Ti–Hf high temperature anti-oxidation coatings on Ta–10W alloy. Powder Metall Ind, 2021, 31(2): 23
    [15]
    杨益航, 李保强, 刘文迪, 等. 钼钨合金抗氧化涂层的制备及性能. 稀有金属材料与工程, 2020, 49(6): 2089

    Yang Y H, Li B Q, Liu W D, et al. Preparation and properties of anti-oxidation coatings of molybdenum-tungsten alloy. Rare Met Mater Eng, 2020, 49(6): 2089
    [16]
    张小锋, 葛昌纯, 李玉杰, 等. 冷动力喷涂法制备钨和钨合金涂层及其涂层的计算模拟. 物理学报, 2012, 61(2): 36

    Zhang X F, Ge C C, Li Y J, et al. Experimental study of tungsten and tungsten alloy coating produced by cold gas dynamic spray and tungsten particles calculation and simulation. Acta Phys Sin, 2012, 61(2): 36
    [17]
    韩雪莹, 刘新利, 吴壮志, 等. 含难熔金属涂层的研究进展. 材料导报, 2020, 34(7): 13146

    Han X Y, Liu X L, Wu Z Z, et al. Research progress in refractory metal coatings. Mater Rep, 2020, 34(7): 13146
    [18]
    种法力. 钨涂层等离子体喷涂参数优化分析. 热加工工艺, 2015, 44(14): 196

    Chong F L. Spraying parameter optimization of plasma sprayed tungsten coating. Hot Working Technol, 2015, 44(14): 196
    [19]
    杜晋. 碳化钨基硬质合金涂层的制备及抗冲蚀与空蚀性能研究[学位论文]. 扬州: 扬州大学, 2020

    Du J. Preparation of Tungsten Carbide Based Coatings and Performance of Their Slurry Erosion Resistance and Cavitation [Dissertation]. Yangzhou: Yangzhou University, 2020
    [20]
    付倩倩, 通雁鹏. 等离子喷涂氧化钇稳定氧化锆涂层的分形特征与断裂韧性. 粉末冶金技术, 2021, 39(2): 122

    Fu Q Q, Tong Y P. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings. Powder Metall Technol, 2021, 39(2): 122
    [21]
    付倩倩, 通雁鹏. 基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究. 粉末冶金技术, 2020, 38(5): 332

    Fu Q Q, Tong Y P. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method. Powder Metall Technol, 2020, 38(5): 332
    [22]
    何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62

    He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62
    [23]
    纪箴, 王聪瑜, 夏洋, 等. 氧化钇稳定氧化锆耐刻蚀涂层的研究现状. 粉末冶金技术, 2015, 33(6): 460

    Ji Z, Wang C Y, Xia Y, et al. The research of YSZ ceramic coating’ s preparation techniques on the surface of etching machine process chamber. Powder Metall Technol, 2015, 33(6): 460
  • Related Articles

    [1]FENG Xiaowei, SI Anheng, FENG Bo, LI Daren. Fabrication, microstructure, and properties of W–Cu graded composites[J]. Powder Metallurgy Technology, 2024, 42(3): 283-289. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020002
    [2]FU Qianqian, TONG Yanpeng. Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying[J]. Powder Metallurgy Technology, 2023, 41(4): 378-384. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010013
    [3]YU Chen-xu. Fabrication, microstructure, and properties of W–Re/graphite composites[J]. Powder Metallurgy Technology, 2021, 39(5): 417-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030024
    [4]CAO Yang, ZHANG Peng-lin, NIU Xian-ming, HU Chun-Lian, CHEN Kai-wang. Research on thermal barrier and thermal shock resistance of NiCr−mullite composite ceramic coating[J]. Powder Metallurgy Technology, 2021, 39(2): 135-140. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120004
    [5]WANG Da-feng, MA Bing, MA Liang-chao, CHEN Dong-gao, LIU Hong-wei, ZHANG Ying-ying, ZHANG Long, DAI Yu, WU Jin-ming, GAO Feng. Effect of WC grain size on the microstructure and mechanical properties of HVOF-sprayed WC-10Co4Cr coatings[J]. Powder Metallurgy Technology, 2019, 37(6): 434-443. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.006
    [6]YOU Li, YANG Fang, SHI Tao, QIN Qian, SUI Yan-li, GUO Zhi-meng. Study on microstructure and mechanical properties of TiC-TiB 2 composite coatings on Al matrix by self-propagating high-temperature synthesis[J]. Powder Metallurgy Technology, 2019, 37(6): 428-433, 443. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.005
    [7]Li Wensheng, Li Yaming, Wang Dafeng, Liu Yi, Zhang Jie. Microstructure and properties of composite coating on Ag/Cu electrical contact by thermal spraying[J]. Powder Metallurgy Technology, 2012, 30(3): 187-191. DOI: 10.3969/j.issn.1001-3784.2012.03.006
    [8]Wang Zhenting, Chen Huahui. Microstructure and wear-resistant properties of induction clad micro-nanostructured composite coating[J]. Powder Metallurgy Technology, 2006, 24(1): 32-35. DOI: 10.3321/j.issn:1001-3784.2006.01.007
    [9]Yi Maozhong, He Jiawen. POWDER, SPRAY PROCESS OF ABRADABLE SEAL COATINGS AND ITS BASIC PROPERTIES[J]. Powder Metallurgy Technology, 1999, 17(1): 29-35.
    [10]Gao Jiacheng, Zhang Yaping, Sheng Shixiong, Xie Longhuai, Wang Xuejun. NEW PROCESS OF FLAM SPRAYING FOR CERAMIC—BASED COMPOSITE COATING WITH HEAT RESISTANCE[J]. Powder Metallurgy Technology, 1993, 11(1): 33-36.

Catalog

    Article Metrics

    Article views (412) PDF downloads (65) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return