Citation: | SU Xuwen, HE Zhi, YAN Shuxin, DONG Longlong, SUN Guodong. Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 86-93. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040009 |
To effectively inhibit the growth of tungsten grains during the liquid phase sintering, the ZrC dispersion-strengthened heavy tungsten alloys (WHAs) were prepared by liquid phase sintering at
[1] |
Miao S, Xie Z M, Zeng L F, et al. The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W−0.5 wt.% Ta−0.01 wt.% C alloy. Fusion Eng Des, 2017, 125: 490
|
[2] |
Xu L, Xiao F, Wei S, et al. Development of tungsten heavy alloy reinforced by cubic zirconia through liquid-liquid doping and mechanical alloying methods. Int J Refract Met Hard Mater, 2019, 78: 1 DOI: 10.1016/j.ijrmhm.2018.08.009
|
[3] |
German R M. Lower sintering temperature tungsten alloys for space research. Int J Refract Met Hard Mater, 2015, 53: 74 DOI: 10.1016/j.ijrmhm.2015.04.020
|
[4] |
Chuvildeev V N, Nokhrin A V, Boldin M S, et al. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W−Ni−Fe tungsten heavy alloys. J Alloys Compd, 2019, 773: 666 DOI: 10.1016/j.jallcom.2018.09.176
|
[5] |
Islam S, Qu X, Askari S, et al. Effect of microstructural parameters on the properties of W−Ni−Fe alloys. Rare Met, 2007, 26(3): 200 DOI: 10.1016/S1001-0521(07)60201-0
|
[6] |
Deng N, Li J, Wang Y, et al. Microstructure and mechanical properties of liquid–phase sintered W@NiFe composite powders. Int J Refract Met Hard Mater, 2021, 95: 105447 DOI: 10.1016/j.ijrmhm.2020.105447
|
[7] |
Li Z B, Zhang H, Chen B, et al. Microstructure and mechanical properties of Al2O3 dispersed fine-grained medium heavy alloys with a superior combination of strength and ductility. Mater Sci Eng A, 2021, 817: 141376 DOI: 10.1016/j.msea.2021.141376
|
[8] |
向道平, 丁雷. 合金元素或氧化物强化W−Ni−Fe高密度合金的研究进展. 中国有色金属学报, 2013, 23(6): 1549 DOI: 10.1016/S1003-6326(13)62629-1
Xiang D P, Ding L. Research progress of alloying elements or oxides strengthened W−Ni−Fe heavy alloys. Chin J Nonferrous Met, 2013, 23(6): 1549 DOI: 10.1016/S1003-6326(13)62629-1
|
[9] |
Li Z B, Wang Y, Zhang H, et al. Effect of ZrB2 addition on microstructure evolution and mechanical properties of 93 wt.% tungsten heavy alloys. Mater Sci Eng A, 2021, 825: 141870
|
[10] |
Li P F, Fan J L, Han Y, et al. Microstructure evolution and properties of tungsten reinforced by additions of ZrC. Rare Met Mater Eng, 2018, 47(6): 1695 DOI: 10.1016/S1875-5372(18)30152-8
|
[11] |
Li P F, Fan J L, Han Y, et al. Toughening mechanisms and interfacial bonding of W−ZrC composites. Rare Met Mater Eng, 2019, 48(3): 751
|
[12] |
杨文涛, 薛冰, 代永富, 等. 球磨时间对钨粉粒度分布及形貌影响. 粉末冶金技术, 2021, 39(5): 423 DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
Yang W T, Xue B, Dai Y F, et al. Effect of milling time on the particle size distribution and morphology of tungsten powders. Powder Metall Technol, 2021, 39(5): 423 DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
|
[13] |
马运柱, 黄伯云, 范景莲, 等. 纳米级W−Ni−Fe复合粉末的制备. 粉末冶金技术, 2005, 23(1): 40 DOI: 10.3321/j.issn:1001-3784.2005.01.008
Ma Y Z, Huang B Y, Fan J L, et al. Preparation of nano-sized W−Ni−Fe composite powder. Powder Metall Technol, 2005, 23(1): 40 DOI: 10.3321/j.issn:1001-3784.2005.01.008
|
[14] |
罗崇玲, 王建新, 孙改云, 等. 粗颗粒钨粉对90W−Ni−Fe钨合金烧结变形与组织性能的影响. 粉末冶金技术, 2016, 34(3): 199 DOI: 10.3969/j.issn.1001-3784.2016.03.008
Luo C L, Wang J X, Sun G Y, et al. Influence of coarse tungsten powder on sintering warpage, structure and properties of 90W−Ni−Fe tungsten heavy alloy. Powder Metall Technol, 2016, 34(3): 199 DOI: 10.3969/j.issn.1001-3784.2016.03.008
|
[15] |
Lee J S, Kim T H, Yu J H, et al. In-situ alloying on synthesis of nanosized Ni−Fe powder. Nanostruct Mater, 1997, 9(1-8): 153 DOI: 10.1016/S0965-9773(97)00041-X
|
[16] |
Hu K, Li X, Ai X, et al. Fabrication, characterization, and mechanical properties of 93W–4.9Ni–2.1Fe/95W–2.8Ni–1.2Fe–1Al2O3 heavy alloy composites. Mater Sci Eng A, 2015, 636: 452
|
[17] |
Li Z B, Zhang H, Zhang G H, et al. Fabrication and characterization of tungsten heavy alloys with high W content by powder metallurgy. Metall Mater Trans A, 2022, 53(3): 1085 DOI: 10.1007/s11661-021-06579-w
|
[18] |
Zhang X, Zhu S, Zhang B, et al. Effect of Y2O3 addition on the microstructure, wear resistance, and corrosion behavior of W−4.9Ni−2.1Fe heavy alloy. J Mater Eng Perform, 2019, 28(8): 4801
|
[19] |
Lee K H, Cha S I, Ryu H J, et al. Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Mater Sci Eng A, 2007, 452-453: 55 DOI: 10.1016/j.msea.2006.10.155
|
[20] |
Hu K, Li X, Guan M, et al. Dynamic deformation behavior of 93W−5.6Ni−1.4Fe heavy alloy prepared by spark plasma sintering. J Refract Met Hard Mater, 2016, 58: 117
|
[21] |
Gong X, Fan J L, Ding F. Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25–1100 °C. Mater Sci Eng A, 2015, 646: 315 DOI: 10.1016/j.msea.2015.08.079
|